Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình đường thẳng và một số bài toán liên quan

Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình đường thẳng và một số bài toán liên quan đến phương trình đường thẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan: PHẦN A . CÂU HỎI Dạng toán 1. Xác định VTCP (Trang 2). Dạng toán 2. Xác định phương trình đường thẳng (Trang 4). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 4). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 6). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 10). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 11). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 14). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 14). + Dạng toán 3.2 Bài toán cực trị (Trang 17). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 19). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 19). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 20). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 22). + Dạng toán 4.4 Bài toán cực trị (Trang 25). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 30). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 32). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 32). + Dạng toán 7.1 Bài toán tìm điểm (Trang 32). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 34). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 34). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 35). + Dạng toán 7.5 Bài toán cực trị (Trang 37). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTCP (Trang 40). Dạng toán 2. Xác định phương trình đường thẳng (Trang 41). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 41). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 43). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 48). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 50). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 58). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 58). + Dạng toán 3.2 Bài toán cực trị (Trang 61). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 65). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 65). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 67). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 69). + Dạng toán 4.4 Bài toán cực trị (Trang 78). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 95). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 97). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 99). + Dạng toán 7.1 Bài toán tìm điểm (Trang 99). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 102). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 104). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 106). + Dạng toán 7.5 Bài toán cực trị (Trang 112).

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 1128 bài toán trắc nghiệm hình học tọa độ Oxyz - Nguyễn Bảo Vương
Tài liệu gồm 268 trang với 1128 câu hỏi trắc nghiệm hình học tọa độ Oxyz có đáp án được chia thành 8 phần: 1. 182 bài tập trắc nghiệm tọa độ không gian Oxyz cơ bản 2. 81 bài tập trắc nghiệm tọa độ không gian Oxyz nâng cao 3. 182 bài tập trắc nghiệm phương trình đường thẳng cơ bản 4. 109 bài tập trắc nghiệm phương trình đường thẳng nâng cao 5. 234 bài tập trắc nghiệm phương trình mặt phẳng cơ bản 6. 147 bài tập trắc nghiệm phương trình mặt phẳng nâng cao 7. 81 bài tập trắc nghiệm phương trình mặt cầu cơ bản 8. 112 bài tập trắc nghiệm phương trình mặt cầu nâng cao [ads]
Kỹ thuật giải nhanh chuyên đề hình giải tích không gian - Trần Đình Cư
Tài liệu gồm 83 trang hướng dẫn các kỹ thuật giải nhanh hình học giải tích không gian trong chương trình Hình học 12 chương 3. CHỦ ĐỀ 1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN Vấn đề 1. Các bài toán điển hình thường gặp Vấn đề 2. Ứng dụng tọa độ giải toán hình học không gian CHỦ ĐỀ 2. MẶT PHẲNG VÀ CÁC BÀI TOÁN LIÊN QUAN Vấn đề 1. Viết phương trình mặt phẳng Vấn đề 2. Vị trí tương đối của hai mặt phẳng Vấn đề 3. Khoảng cách từ một điểm đến một mặt phẳng, khoảng cách giữa hai mặt phẳng song song. Hình chiếu và điểm đối xứng Vấn đề 4. Góc của hai mặt phẳng Vấn đề 5. Ứng dụng giải toán hình học không gian CHỦ ĐỀ 3. MẶT CẦU VÀ CÁC BÀI TOÁN LIÊN QUAN Vấn đề 1. Viết phương trình mặt cầu Vấn đề 2. Vị trí tương đối của mặt phẳng và mặt cầu [ads] CHỦ ĐỀ 4. ĐƯỜNG THẲNG VÀ CÁC BÀI TOÁN LIÊN QUAN Vấn đề 1. Viết phương trình đường thẳng + Dạng 1. Viết phương trình đường thẳng Δ (Δ ⊂ (P)) hoặc song song với (P) qua điểm A và vuông góc với đường thẳng d + Dạng 2. Viết phương trình đường thẳng Δ qua A, vuông góc với d1 và cắt d2 + Dạng 3. Viết phương trình đường thẳng Δ qua A, song song với (P) và cắt d + Dạng 4. Viết phương trình đường thẳng d nằm trong mặt phẳng (P) và cắt cả hai đường thẳng d1, d2 Vấn đề 2. Vị trí tương đối của 2 đường thẳng trong không gian + Dạng 1. Viết phương trình đường thẳng đi qua điểm M và cắt cả hai đường thẳng d1 và d2 + Dạng 2. Viết phương trình đường thẳng d song song với đường thẳng Δ và cắt hai đường thẳng d1, d2 + Dạng 3. Viết phương trình đường vuông góc chung d của hai đường thẳng chéo nhau Vấn đề 3. Khoảng cách từ một điểm đến một đường thẳng và khoảng cách giữa hai đường thẳng chéo nhau + Dạng 1. Khoảng cách từ một điểm đến một đường thẳng + Dạng 2. Khoảng cách giữa hai đường thẳng chéo nhau + Dạng 3. Ứng dụng tọa độ giải toán không gian Vấn đề 4. Các bài toán liên quan giữa đường thẳng và mặt phẳng + Dạng 1. Đường thẳng song song với mặt phẳng + Dạng 2. Hình chiếu vuông góc của một điểm lên mặt phẳng + Dạng 3. Hình chiếu vuông góc của một đường thẳng lên mặt phẳng + Dạng 4. Hình chiếu của một điểm lên đường thẳng Vấn đề 5. Các bài toán liên quan giữa đường thẳng và mặt cầu CHỦ ĐỀ 5. GÓC TRONG KHÔNG GIAN Vấn đề 1. Góc và các bài toán liên quan Vấn đề 2 . Sử dụng tọa độ giải toán hình học không gian CHỦ ĐỀ 6. MỘT SỐ PHƯƠNG PHÁP GIẢI TOÁN CỰC TRỊ HÌNH HỌC KHÔNG GIAN Vấn đề 1. Giải toán cực trị hình học bằng cách sử dụng bất đẳng thức hình học Vấn đề 2. Giải toán cực trị bằng phương pháp hàm số hoặc bằng cách sử dụng bất đẳng thức đại số Vấn đề 3. Giải toán cực trị bằng phương pháp ứng dụng tâm tỉ cự + Dạng 1. Cực trị độ dài vectơ + Dạng 2. Cực trị độ dài bình phương vô hướng của vectơ + Dạng 3. Cực trị dựa vào tính chất hình học PHỤ LỤC 1. MỘT SỐ BÀI TẬP RÈN LUYỆN HÌNH HỌC GIẢI TÍCH TRƯỚC KHI THI  PHỤ LỤC 2. GIẢI BÀI TOÁN HÌNH HỌC KHÔNG GIAN BÀNG HAI CÁCH
Giải nhanh hình học không gian bằng máy tính Casio - Hà Ngọc Toàn
Việc BGD ra đề thi trắc nghiệm đối với môn Toán đa phần đối với học sinh là rất mới nhất là tốc độ để giải quyết các bài toán về hình học không gian. Để giúp các em có cách nhanh nhất giải các bài toán trắc nghiệm thầy biên soạn chuyên đề sử dụng casio giải nhanh hình học không gian, mặc dù ở phần này casio chỉ hỗ trợ chúng ta một phần rất nhỏ nhưng nó cũng giảm bớt được thời gian chọn đáp án, các em chú ý rằng phương pháp này không phải là toàn năng và nhanh nhất để giải toán, có những bài sử dụng phương pháp truyền thống giải nhanh hơn rất nhiều. Vì thế các em coi phương pháp này là để tham khảo và học hỏi thêm. Phương pháp tọa độ hóa trong không gian ta cần phải thực hiện được các yêu cầu sau: + Bước 1: Chọn hệ trục tọa độ Oxyz thích hợp ( chú ý đến vị trí của gốc O), chọn hệ trục sao cho có 3 đường thẳng đôi một vuông góc với nhau. + Bước 2: Xác định tọa độ các điểm có liên quan ví dụ đề bài yêu cầu tính thể tích của khối chop SABC thì chúng ta chỉ cần tìm tọa độ các điểm S;A;B;C và khi xác định tọa độ các điểm ta có thể dựa vào những yếu tố sau: [ads] – Ý nghĩa hình học của tọa độ điểm khi các điẻm nằm trên cá trục tọa độ, mặt phẳng tọa độ ví dụ điểm A nằm trên truc Ox khi đó A( a;0;0) hay điểm A nằm trên mặt phẳng oxy khi đó A( a;b;0) , chú ý việc xác định tọa độ điểm là quan trọng nhất nên rất cẩn trọng, và việc xác định tọa độ điểm để tìm ra A(x;y;z) thì từ điểm đó ta phải kẻ vuông góc vào các hệ trục tọa độ đã chọn. – Dựa vào các quan hệ hình học bằng nhau, vuông góc, song song, cùng phương, thẳng hàng, điểm chia đoạn thẳng để tìm tọa độ. – Xem điểm cần tìm là giao điểm của đường thẳng, mặt phẳng. – Dựa vào các quan hệ về góc của đường thẳng, mặt phẳng. + Bước 3: Sử dụng kiến thức về tọa độ để giải quyết bài toán.
Phương pháp trắc nghiệm hình học giải tích mặt phẳng và không gian - Mộng Hy, Thế Cấp
Cuốn sách gồm 247 trang gồm lý thuyết, phương pháp giải toán và các bài tập trắc nghiệm có lời giải chi tiết chủ đề hình học giải tích. Cuốn sách gồm 10 chuyên đề được chia làm 2 phần: phần 1 là phần hình học giải tích trong mặt phẳng do TS. Đậu Thế Cấp biên soạn, phần 2 là phần hình học giải tích trong không gian do PGS.TS Nguyễn Mộng Hy biên soạn. Cuối cùng có phần trắc nghiệm giúp người đọc hoàn thiện hơn kiến thức của mình. Phần 1. Hình học giải tích trong mặt phẳng Chuyên đề 1. Vectơ và tọa độ trong mặt phẳng Chuyên đề 2. Đường thẳng trong mặt phẳng Chuyên đề 3. Đường tròn Chuyên đề 4. Elip Chuyên đề 5. Hypebol Chuyên đề 6. Parabol [ads] Phần 2. Hình học giải tích trong không gian Chuyên đề 7. Vectơ tọa độ trong không gian Chuyên đề 8. Mặt phẳng Chuyên đề 9. Đường thẳng trong không gian Chuyên đề 10. Mặt cầu