Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường chuyên Trần Đại Nghĩa - TP HCM

Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT chuyên Trần Đại Nghĩa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT chuyên Trần Đại Nghĩa – TP HCM : + Một cái bàn có mặt bàn là hình elip, biểu diễn trong mặt phẳng toạ độ Oxy có phương trình (E). Một tấm khăn hình chữ nhật ABCD được phủ lên mặt bàn (A, B, C, D thuộc elip (E), các cạnh của hình chữ nhật ABCD đối xứng nhau qua hai trục của elip (E)). Biết chiều dài hình chữ nhật song song trục lớn và bằng nửa độ dài trục lớn của elip. Tính diện tích phần mặt bàn không bị phủ bởi tấm khăn biết rằng nếu elip có phương trình (a > b > 0) thì diện tích elip là piab. + Cho tam giác nhọn ABC với trực tâm H. Cho W là một điểm tùy ý trên cạnh BC, khác với các điểm B và C. Các điểm M và N tương ứng là chân các đường cao hạ từ B và C. Kí hiệu w1 là đường tròn ngoại tiếp tam giác BWN, và gọi X là điểm trên w1 sao cho WX là đường kính của w1. Tương tự, kí hiệu w2 là đường tròn ngoại tiếp tam giác CWM, và gọi Y là điểm trên w2 sao cho WY là đường kính của w2. Chứng minh rằng các điểm X, Y và H thẳng hàng. + Trong mặt phẳng toạ độ Oxy, tính tiêu cự của elip có phương trình x2 + 4y2 = 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Đông Dương - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Đông Dương, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Đông Dương – TP HCM : + Cho tam giác ABC có cạnh CB = 7cm, AC = 10cm, góc C có số đo 600. Tính cạnh AB, diện tích tam giác ABC và bán kính đường tròn ngoại tiếp tam giác ABC. + Cho phương trình bậc hai ẩn x, tham số m. Tìm giá trị của m để phương trình có hai nghiệm dương phân biệt. + Hai cung lượng giác khi biểu diễn trên đường tròn lượng giác thì có điểm cuối trùng nhau hay không? Vì sao?
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Thanh Đa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Thanh Đa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Thanh Đa – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm N, M và đường thẳng d. a) Viết phương trình tham số của đường thẳng d. b) Viết phương trình tổng quát của đường thẳng MN. c) Viết phương trình đường thẳng d’ đi qua điểm N và vuông góc với d. d) Tính khoảng cách từ điểm N đến đường thẳng d. + Cho f(x) với m là tham số. Tìm tất cả các giá trị của tham số m để f(x) > 0. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình. Tìm tọa độ tâm I và tính bán kính R của đường tròn C.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 05 năm 2020, trường THCS và THPT Nguyễn Tất Thành, trực thuộc Đại học Sư Phạm Hà Nội tổ chức kì thi kiểm tra học kì 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi học kì 2 Toán 10 năm 2019 – 2020 trường Nguyễn Tất Thành – Hà Nội bao gồm 04 mã đề: 101, 102, 103 và 104; đề gồm 12 câu trắc nghiệm (3 điểm) và 04 câu tự luận (7 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường Nguyễn Tất Thành – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x + 1)^2 + (y – 2)^2 = 9 và đường thẳng ∆: 3x + 4y – 2m + 4 = 0 (trong đó m là tham số). Gọi S là tập hợp tất cả các giá trị của tham số m sao cho đường thẳng ∆ là tiếp tuyến của đường tròn (C). Tích các số thuộc tập hợp S bằng? + Cho a và b là hai số thực bất kì. Xét các mệnh đề sau: Mệnh đề 1: sin(a + b) = sina.cosb + sinb.cosa . Mệnh đề 2: sin(a – b) = sinb.cosa – sina.cosb. Mệnh đề 3: cos(a – b) = cosa.cosb – sina.sinb. Mệnh đề 4: cos(a + b) = cosa.cosb + sina.sinb. Số mệnh đề đúng trong các mệnh đề trên là? + Trong mặt phẳng tọa độ Oxy, cho elip (E): x^2/4 + y^2 = 1. Gọi F1 và F2 là hai tiêu điểm của (E) và điểm M ∈ (E) sao cho MF1 ⊥ MF2. Tính MF1^2 + MF2^2 và diện tích ∆MF1F2.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Tân Túc - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Tân Túc, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.