Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên năm 2018 - 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên)

Đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở GD và ĐT Thái Bình (đề dành cho thí sinh chuyên Toán, Tin) gồm 1 trang được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài 150 phút, kết quả của bài thi này là cơ sở để tuyển chọn các em có năng khiếu môn Toán và Tin học vào các lớp chuyên để bồi dưỡng, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở Thái Bình (đề chuyên) : + Cho nửa đường tròn đường kính AB = 2R. Tìm kích thước hình chữ nhật MNPQ có hai đỉnh M, N thuộc nửa đường tròn, hai đỉnh P, Q thuộc đường kính AB sao cho diện tích MNPQ lớn nhất. [ads] + Hai cây nến cùng chiều dài và làm bằng các chất liệu khác nhau, cây nến thứ nhất cháy hết với tốc độ đều trong 3 giờ, cây nến thứ hai cháy hết với tốc độ đều trong 4 giờ. Hỏi phải cùng bắt đầu đốt lúc mấy giờ chiều để đến 4 giờ chiều, phần còn lại của cây nến thứ hai dài gấp đôi phần còn lại của cây nến thứ nhất? + Cho tam giác ABC có AB = 4, AC = 3, BC = 5, đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ hai nửa đường tròn đường kính BH và HC. Hai nửa đường tròn này cắt AB, AC lần lượt tại E, F. a) Tính diện tích của nửa hình tròn đường kính BH. b) Chứng minh tứ giác BEFC nội tiếp và đường thẳng EF là tiếp tuyến chung của hai đường tròn đường kính BH và CH.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút (không tính thời gian phát đề). Đề thi này dành cho các thí sinh muốn thi vào các lớp chuyên Toán. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn: Cho a, b là các số nguyên dương thỏa mãn a − 1 và b + 2021 đều chia hết cho 6. Chứng minh 4a + a + b chia hết cho 6. Tìm tất cả các số nguyên tố p sao cho p là ước của 5p − 2p. Tìm tất cả các số nguyên tố p và q sao cho (5p − 2p) (5p − 2p)pq là một số nguyên. Bên trong hình chữ nhật có chiều dài 101 cm và chiều rộng 20 cm cho 10101 điểm. Vẽ 10101 hình tròn có tâm là 10101 điểm đã cho và bán kính đều bằng √2 cm. Liệu có 6 điểm thuộc vào phần chung của 6 hình tròn nhận chính 6 điểm ấy làm tâm không? Tại sao? Đây là những bài toán đặc sắc đòi hỏi sự logic, khéo léo và kiến thức vững chắc trong môn Toán. Thí sinh cần phải rèn luyện kỹ năng tư duy và giải quyết vấn đề để có thể hoàn thành đề thi một cách tốt nhất.
Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Cao Bằng
Nội dung Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Cao Bằng Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng Đề tuyển sinh chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng bao gồm 01 trang với 05 bài toán dạng tự luận, học sinh có thời gian làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng: + Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x^2 và đường thẳng (d) : y = 2(m - 1)x - m^2 + 3. Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1, y1) và (x2, y2) sao cho: y1 + y2 - x1x2 - 33 = 0. + Tìm tất cả các số dương x để biểu thức Q = 3x/(x^2 - x + 1) nhận giá trị là những số nguyên. + Tìm tất cả các số tự nhiên a có bốn chữ số thỏa mãn. Khi chia a cho 80 ta được số dư là 20 và khi chia a cho 41 ta được số dư là 11. Đề tuyển sinh này đặt ra những bài toán phức tạp nhưng hấp dẫn, đòi hỏi học sinh phải có kiến thức vững và biết áp dụng lẽ logic để giải quyết. Qua đề thi này, học sinh sẽ có cơ hội thể hiện khả năng toán học của mình một cách sáng sủa và chính xác.
Đề tuyển sinh chuyên môn Toán (chung) năm 2020 2021 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chung) năm 2020 2021 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Thông tin về Đề tuyển sinh chuyên môn Toán (chung) năm 2020-2021 sở GD&ĐT Hà Nam Thông tin về Đề tuyển sinh chuyên môn Toán (chung) năm 2020-2021 sở GD&ĐT Hà Nam Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020-2021 sở GD&ĐT Hà Nam bao gồm 5 bài toán dạng tự luận trên 1 trang đề thi. Thời gian làm bài thi là 120 phút và kỳ thi sẽ diễn ra vào ngày ... tháng 07 năm 2020. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh: Cho hàm số y = ax^2 (với a khác 0) có đồ thị là parabol như hình vẽ. Hãy xác định hệ số a. Giải phương trình 12x^2 = x + m^2 (trong đó m là tham số) và chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m ∈ R. Tìm các giá trị của m để x1 = p^3 - x^3. Xét đường tròn (O) có đường kính AB cố định. Hãy chứng minh rằng tứ giác BCKH nội tiếp và tam giác AMK đồng dạng với tam giác ACM. Cho độ dài đoạn thẳng AH = a. Hãy tính AK.AC - HA.HB theo a. Xác định vị trí của điểm C để độ dài đoạn thẳng IN nhỏ nhất, trong đó I là tâm đường tròn ngoại tiếp tam giác MKC. Đề tuyển sinh này không chỉ đánh giá kiến thức Toán của thí sinh mà còn đánh giá khả năng phân tích, suy luận và trí tuệ. Hãy chuẩn bị kỹ càng và tự tin để đối mặt với thách thức này!
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Gia Lai
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2020 - 2021 của Sở Giáo dục và Đào tạo Gia Lai Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2020 - 2021 của Sở Giáo dục và Đào tạo Gia Lai Đề thi tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 - 2021 của Sở Giáo dục và Đào tạo Gia Lai bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn từ đề thi tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 - 2021 của Sở Giáo dục và Đào tạo Gia Lai: + Tính giá trị của tham số m để hàm số y = (m - 1) x + m2 nghịch biến trên tập hợp số thực và đồ thị của nó đi qua điểm M (2; 1). + Cho phương trình x2 - 2(m - 1)x + 2m - 4 = 0 (với m là tham số) có hai nghiệm phân biệt x1, x2. Tìm giá trị của tham số m sao cho x21 + x22 = 3. + Tìm nghiệm nguyên dương của phương trình 2x2 - 8x + 62 = (x - 1)y2 + x2 - 6x + 5. Đề thi này là cơ hội để các thí sinh thử sức, hiểu biết và khả năng giải quyet vấn đề một cách logic và chính xác.