Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 12 năm 2018 - 2019 sở GDĐT Bắc Ninh

Thứ Sáu ngày 15 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2018 – 2019, đây là kỳ thi nhằm phát hiện và tuyển chọn những em học sinh lớp 12 giỏi môn Toán đang học tập tại các trường THPT trên địa bàn tỉnh Bắc Ninh, các em được chọn sẽ là những tấm gương tiêu biểu trong học tập cho học sinh toàn tỉnh. Đề thi học sinh giỏi tỉnh Toán 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh có mã đề 485 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút. [ads] Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh : + . Mệnh đề nào dưới đây SAI? A. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. B. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. C. Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. D. Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. + Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(6;0;0), (0;6;0), P(0;0;6). Hai mặt câu có phương trình (S1): x^2 + y^2 + z^2 – 2x – 2y + 1 = 0 và (S2): x^2 + y^2 + z^2 – 8x + 2y + 2z + 1 = 0 cắt nhau theo đường tròn (C). Hỏi có bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa (C) và tiếp xúc với ba đường thẳng MN, NP, PM? + Cho hàm số y = (m – 3)x – 2m + 1 có đồ thị là đường thẳng d. Gọi S là tập các giá trị của tham số m để đường thẳng d cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho tam giác OAB cân. Số tập con của tập S là?

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT An Giang
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT An Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2021.
Đề chọn đội tuyển Toán năm 2021 - 2022 trường Phổ thông Năng khiếu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển Toán năm học 2021 – 2022 trường Phổ thông Năng khiếu, thành phố Hồ Chí Minh; kỳ thi được diễn ra trong hai ngày: Thứ Bảy 04/12/2021 và Thứ Ba 07/12/2021.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Đồng Nai
Thứ Hai ngày 22 tháng 11 năm 2021, sở Giáo dục và Đào tạo Đồng Nai tổ chức kỳ thi chọn đội tuyển học sinh giỏi THPT môn Toán học dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Đồng Nai gồm 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề chọn đội tuyển HSG Toán 12 năm 2021 - 2022 sở GDĐT Bà Rịa - Vũng Tàu
Đề chọn đội tuyển HSG Toán 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 24 tháng 11 năm 2021. Trích dẫn đề chọn đội tuyển HSG Toán 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn tâm O và có các đường cao AD, BE, CF cắt nhau tại H. Gọi O1 là điểm đối xứng của O qua đường thẳng BC. AO1 cắt BC tại L, DE cắt HC tại M, DF cắt HB tại N. a) Chứng minh đường tròn ngoại tiếp tam giác DMN và đường tròn đường kính AL tiếp xúc nhau. b) Tiếp tuyến tại D của đường tròn đường kính AL cắt EF tại K. Chứng minh KH = KD. + Cho các số nguyên dương a, b, c phân biệt. Chứng minh tồn tại số nguyên n sao cho a + n, b + n, c + n là các số đôi một nguyên tố cùng nhau. + Trên mặt phẳng ta vẽ 3333 đường tròn đôi một khác nhau và có bán kính bằng nhau. Chứng minh rằng luôn chọn ra được trong số đó 34 đường tròn mà các đường tròn này đôi một có điểm chung hoặc đôi một không có điểm chung.