Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức

Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Biến đổi các biểu thức hữu tỉ. + Biểu thức hữu tỉ là một phân thức hoặc biểu thị một dãy các phép toán: cộng, trừ, nhân chia trên những phân thức. + Biến đổi một hiểu thức hữu tỉ thành một phân thức nhờ các quy tắc của phép toán cộng, trừ, nhân, chia các phân thức đã học. 2. Giá trị của phân thức. + Giá trị của một phân thức chỉ đuợc xác định với điều kiện giá trị của mẫu thức khác 0. + Chú ý: Biểu thức hữu tỉ có hai biến x và y thì giá trị của biểu thức đó chi đuợc xác định với các cặp số (x;y) làm cho giá trị của mẫu thức khác 0. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm điều kiện xác định của phân thức. Ta xác định các giá trị của biến để mẫu thức khác 0. Dạng 2 : Biến đổi biểu thức hữu tỷ thành phân thức. + Bước 1. Sử dụng kết hợp các quy tắc cộng, trừ, nhân, chia phân thức đại số đã học để biến đổi. + Bước 2. Biến đổi cho tới khi được một phân thức có dạng A/B với A và B là các đa thức, B khác đa thức 0. Dạng 3 : Thực hiện phép tính với các biểu thức hữu tỷ. Sử dụng kết hợp các quy tắc cộng, trừ, nhân, chia phân thức đại số đã học để biến đổi. Dạng 4 : Tìm x để giá trị của một phân thức đã cho thỏa mãn điều kiện cho trước. Ta sử dụng các kiến thức sau: + A/B > 0 khi và chỉ khi A và B cùng dấu. + A/B < 0 khi và chỉ khi A và B trái dấu. + Hằng đẳng thức đáng nhớ và chú ý a^2 >= 0 với mọi giá trị của a. + Với a; b thuộc Z và b khác 0 ta có: a/b thuộc Z khi và chỉ khi b thuộc Ư(a).

Nguồn: toanmath.com

Đọc Sách

Đề cương học kì 2 Toán 8 năm 2023 - 2024 trường THCS Long Toàn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Long Toàn, tỉnh Bà Rịa – Vũng Tàu. I. CÁC KIẾN THỨC TRỌNG TÂM A. Đại số. 1. Khái niệm hàm số và đồ thị của hàm số. 2. Hàm số bậc nhất và đồ thị của hàm số bậc nhất. 3. Hệ số góc của đường thẳng. 4. Phương tình bậc nhất một ẩn. 5. Giải bài toán bằng cách lập phương trình bậc nhất. B. Thống kê và xác suất. 1. Mô tả xác suất bằng tỉ số. 2. Xác suất lí thuyết và xác suất thực nghiệm. C. Hình học. 1. Định lí Thalès trong tam giác. 2. Đường trung bình của tam giác. 3. Tính chất đường phân giác của tam giác. 4. Hai tam giác đồng dạng. 5. Các trường hợp đồng dạng của hai tam giác. 6. Các trường hợp đồng dạng của hai tam giác vuông. 7. Hai hình đồng dạng. II. CÁC ĐỀ THAM KHẢO
Đề cương cuối học kỳ 2 Toán 8 năm 2023 - 2024 trường Việt Anh 2 - Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kỳ 2 môn Toán 8 năm học 2023 – 2024 trường Trung – Tiểu học Việt Anh 2, tỉnh Bình Dương. A. TRỌNG TÂM KIẾN THỨC. B. CÁC DẠNG BÀI TẬP. C. ĐỀ MINH HỌA.
Đề cương học kỳ 2 Toán 8 năm 2023 - 2024 trường THCS Hoàng Hoa Thám - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kỳ 2 môn Toán 8 năm học 2023 – 2024 trường THCS Hoàng Hoa Thám, quận Ba Đình, thành phố Hà Nội. I. KIẾN THỨC TRỌNG TÂM 1. Đại số: – Chương VI. Phân thức đại số. – Chương VII: Phương trình bậc nhất một ẩn và hàm số bậc nhất. 2. Hình học: – Chương IX. Tam giác đồng dạng. – Chương X: Một số hình khối trong thực tiễn. II. CÁC DẠNG BÀI TẬP THAM KHẢO
Đề cương học kì 2 Toán 8 năm 2023 - 2024 trường THCS Phan Chu Trinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Phan Chu Trinh, quận Ba Đình, thành phố Hà Nội. Giới hạn chương trình: Hết Tuần 30. * Đại số : – Phân thức đại số. – Phương trình, giải bài toán bằng cách lập phương trình. – Hàm số bậc nhất và đồ thị của hàm số bậc nhất. – Kết quả có thể và kết quả thuận lợi. – Cách tính xác suất của biến cố bằng tỉ số. * Hình học : – Tam giác đồng dạng. – Định lý Pytago và ứng dụng. – Các TH đồng dạng của hai tam giác vuông. – Hình đồng dạng. – Hình chóp tam giác đều.