Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán cực trị số phức bằng phương pháp hình học giải tích - Nguyễn Hữu Tình

Tài liệu gồm 26 trang được biên soạn bởi thầy Nguyễn Hữu Tình (giáo viên trường THPT chuyên Võ Nguyên Giáp – Quảng Bình) hướng dẫn giải bài toán cực trị số phức bằng phương pháp hình học giải tích, đây là lớp các bài toán vận dụng cao số phức và thường xuất hiện trong đề thi THPT Quốc gia 2018. Trong chương trình Toán THPT, phần Đại số mà cụ thể là phần Số học, ở chương trình lớp 12, học sinh được hoàn thiện hiểu biết của mình về các tập hợp số thông qua việc cung cấp một tập hợp số, gọi là Số phức. Trong chương này, học sinh đã bước đầu làm quen với các phép toán cộng, trừ, nhân, chia, khai căn, lũy thừa; lấy môđun, … các số phức. Bằng cách đặt tương ứng mỗi số phức z = x + yi (x, y ∈ R) với mỗi điểm M(x;y) trên mặt phẳng tọa độ Oxy, ta thấy giữa Đại số và Hình học có mối liên hệ với nhau khá “gần gũi”. Hơn nữa, nhiều bài toán Đại số bên Số phức, khi chuyển sang Hình học, từ những con số khá trừu tượng, bài toán đã được minh họa một cách rất trực quan, sinh động và cũng giải được bằng Hình học với phương pháp rất đẹp. Đặc biệt, trong các kỳ thi Đại học, Cao đẳng và THPT Quốc gia những năm gần đây, việc sử dụng phương pháp Hình học để giải quyết các bài toán về Số phức là một trong những phương pháp khá hay và hiệu quả, đặc biệt là các bài toán về Cực trị trong số phức. Hơn nữa, với những bài toán Hình học theo phương pháp trắc nghiệm, nếu khi biểu diễn được trên giấy thì qua hình ảnh minh họa, ta có thể lựa chọn đáp án một cách dễ dàng. [ads] Tuy nhiên, trong thực tế giảng dạy, việc chuyển từ bài toán Đại số nói chung và Số phức nói riêng sang bài toán Hình học ở nhiều học sinh nói chung còn khá nhiều lúng túng, vì vậy việc giải các bài toán về Số phức gây ra khá nhiều khó khăn cho học sinh. Bài toán Cực trị Số phức thông thường thì có khá nhiều cách lựa chọn để giải như dùng Bất đẳng thức, dùng Khảo sát hàm số … Qua chuyên đề này, tôi muốn gợi ý cho học sinh một lối tư duy vận dụng linh hoạt các phương pháp chuyển đổi từ bài toán Đại số sang Hình học cho học sinh, giúp các em có cái nhìn cụ thể hơn về việc chuyển đổi đó và vận duy tư duy này cho những bài toán khác. Với mục tiêu đó, trong chuyên đề này, tôi chỉ tập trung giải quyết bài toán theo hướng Hình học. Không đặt nặng việc so sánh phương pháp nào nhanh hơn, tối ưu hơn phương pháp nào.

Nguồn: toanmath.com

Đọc Sách

367 bài toán số phức tuyển chọn có lời giải chi tiết
giới thiệu đến bạn đọc tài liệu 367 bài toán số phức tuyển chọn có lời giải chi tiết, hỗ trợ các bạn trong quá trình học tập chương 4 Giải tích 12: số phức và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Tài liệu gồm 111 trang với các bài toán số phức ở dạng trắc nghiệm khách quan, có đáp án và lời giải chi tiết. Các bài toán trắc nghiệm số phức được phân loại thành 4 chủ đề, bao gồm: + Chủ đề 1: Số phức. + Chủ đề 2: Các phép toán trên tập số phức. + Chủ đề 3: Giải phương trình trên tập số phức. + Chủ đề 4: Biểu diễn số phức. [ads] Trích dẫn tài liệu 367 bài toán số phức tuyển chọn có lời giải chi tiết : + Cho z = 2 + 3i là một số phức. Hãy tìm một phương trình bậc hai với hệ số thực nhận z và z¯ làm nghiệm. + Trong C, cho phương trình bậc hai az^2 + bz + c = 0 (a khác 0). Gọi Δ = b^2 – 4ac. Ta xét các mệnh đề: 1) Nếu Δ là số thực âm thì phương trình vô nghiệm. 2) Nếu Δ khác 0 thì phương trình có hai nghiệm phân biệt. 3) Nếu Δ = 0 thì phương trình có nghiệm kép. Trong các mệnh đề trên: A. Không có mệnh đề nào đúng. B. Có một mệnh đề đúng. C. Có hai mệnh đề đúng. D. Cả ba mệnh đề đều đúng. + Cho số phức z thỏa mãn z^2 là số ảo. Tập hợp điểm biểu diễn số phức z là? A. Đường tròn. B. Đường thẳng. C. Elip. D. Parabol.
Tập hợp biểu diễn số phức - Trần Văn Toàn
Tài liệu số phức do thầy Trần Văn Toàn biên soạn gồm 37 trang với nội dung chủ đạo là các bài toán liên quan đến tập hợp biểu diễn số phức. Tài liệu nêu rõ các tính chất cần nắm để giải quyết các bài toán tìm tập hợp biểu diễn số phức, cùng với các ví dụ minh họa có lời giải chi tiết đi kèm. Ngoài ra, tài liệu còn trình bày một số kiến thức bổ trợ có liên quan. Khái quát nội dung tài liệu tập hợp biểu diễn số phức – Trần Văn Toàn: Chương 1 . Số phức 1.1 Tập hợp biểu diễn số phức.  • Tính chất 1.1. Cho hai số phức z và z1. Gọi M là điểm biểu diễn cho số phức z, A là điểm biểu diễn cho số phức z1. Đại lượng |z − z1| là độ dài đoạn thẳng AM. • Tính chất 1.2. Cho số phức z1 = a + bi, tập hợp các điểm biểu diễn số phức z thoả |z − z1| = R là đường tròn tâm I(a;b), bán kính R. • Tính chất 1.3. Cho các số phức z, z1, z2 thoả |z − z1| = R. Tập hợp biểu diễn của số phức w = z + z2 là đường tròn có tâm là điểm biểu diễn cho số phức z1 + z2 và bán kính bằng R. • Tính chất 1.4. Cho các số phức z, z1, z2 (z2 khác 0), z3 với |z − z1| = R. Tập hợp các điểm biểu diễn cho số phức w = z.z2 + z3 là đường tròn có tâm là điểm biểu diễn cho số phức z1.z2 + z3, bán kính bằng |z2|R. • Tính chất 1.5. Cho các số phức z, z1, z2 (z2 khác 0), z3 với |z − z1| = R. Tìm tập hợp biểu diễn của số phức w = z/z2 + z3 là đường tròn có tâm là điểm biểu diễn cho số phức z1/z2 + z3, bán kính đường tròn bằng R/|z2|. • Tính chất 1.6. Cho hai số phức z, z1 thoả |z − z1| = R. Giá trị lớn nhất của |z| là |z1| + R và giá trị nhỏ nhất của |z| là ||z1| − R|. • Tính chất 1.7. Cho hai số phức z, z1 thoả |z − z1| = R. Giá trị lớn nhất của |z + z2| là |z1 + z2| + R và giá trị nhỏ nhất của |z + z2| là ||z1 + z2| − R|. • Tính chất 1.8. Cho các số phức z, z1 (z1 khác 0), z2 thoả |z.z1 + z2| = R. Giá trị lớn nhất của |z| là (R + |z2|)/|z1|, giá trị nhỏ nhất của |z| là |R −|z2||/|z1|. • Tính chất 1.9. Cho các số phức z, z1 (z1 khác 0), z2 thoả |z.z1 + z2| = R. Giá trị lớn nhất của |z + z3| là R/|z1| + |z4|, giá trị nhỏ nhất của |R/|z1| − |z4||, ở đây z4 = z3 − z2/z1. [ads] • Tính chất 1.10. Cho các số phức z, z1, z2, z3 thoả |z − z1| = |z − z2|. Tìm giá trị nhỏ nhất của môđun số phức w = z + z3. • Tính chất 1.11. Cho đường thẳng ∆ có phương trình ax + by + c = 0 và hai điểm C(x1, y1), D(x2, y2). Đặt f (x, y) = ax + by + c. Ta có: 1) C và D ở cùng phía của ∆ khi và chỉ khi (ax1 + by1 + c)(ax2 + by2 + c) > 0. 2) C và D ở khác phía của ∆ khi và chỉ khi (ax1 + by1 + c)(ax2 + by2 + c) < 0. • Tính chất 1.12. Cho các số phức z, z1, z2, z3, z4 thoả |z − z1| = |z − z2|. Tìm giá trị nhỏ nhất của w = |z − z3| + |z − z4|. • Tính chất 1.13. Cho đường tròn (C) và hai điểm A, B cố định thuộc (C). Điểm M trên (C) sao cho MA + MB: 1) nhỏ nhất khi và chỉ khi M trùng với A hay M trùng với B. 2) lớn nhất khi M là một trong hai giao điểm của đường trung trực đoạn AB với đường tròn (C). • Tính chất 1.14. Cho hai số phức z, z1 thoả |z − z1| + |z + z1| = k. Giá trị lớn nhất của |z| là k/2 và giá trị nhỏ nhất của |z| là √(k^2/4 − |z1|^2). • Tính chất 1.15. Cho hai số phức z, z1 thoả m|z − z1| + n|z + z1| = k. Tìm giá trị lớn nhất của và giá trị nhỏ nhất |z|. • Tính chất 1.16. Cho (C) là đường tròn ngoại tiếp hình vuông ABCD và M là điểm trên (C). Tìm giá trị lớn nhất và giá trị nhỏ nhất của tổng S = AM + BM + CM + DM. • Tính chất 1.17. Với hai số phức z1, z2 tuỳ ý, ta có: 1) |z1 + z2|^2 +|z1 − z2|^2 = 2(|z1|^2 + |z2|^2). 2) (|z1| + |z2|)^2 ≤ |z1 + z2|^2 + |z1 − z2|^2. Dấu đẳng thức xảy ra khi và chỉ khi |z1| = |z2|. 1.2 Vị trí tương đối của đường thẳng và đường tròn. Chương 2 . Tiếp tuyến 2.1 Hàm phân thức. 2.2 Hàm bậc ba.
Hướng dẫn giải các dạng toán số phức
giới thiệu đến các em học sinh khối 12 một tài liệu Toán hay về chủ đề số phức, hỗ trợ các em trong quá trình học tập nội dung chương trình Giải tích 12 chương 4 và ôn tập chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán. Tài liệu gồm 104 trang phân dạng và hướng dẫn giải các dạng toán số phức thường gặp, trong mỗi dạng toán, tài liệu đều trình bày đầy đủ lý thuyết, hướng dẫn phương pháp giải toán, cùng với đó là các ví dụ minh họa và bài tập có lời giải chi tiết. Khái quát nội dung tài liệu hướng dẫn giải các dạng toán số phức: BÀI 1 . DẠNG ĐẠI SỐ CỦA SỐ PHỨC VÀ CÁC PHÉP TOÁN TRÊN SỐ PHỨC. + Dạng 1.1. Bài toán quy về giải phương trình và hệ phương trình nghiệm thực. + Dạng 1.2. Xác định các yếu tố cơ bản của số phức qua các phép toán. + Dạng 1.3. Chuẩn hóa số phức. [ads] BÀI 2 . BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC VÀ BÀI TOÁN LIÊN QUAN. + Dạng 2.1. Tập hợp điểm của số phức là đường thẳng và các bài toán liên quan. + Dạng 2.2. Tập hợp điểm của số phức là đường tròn, hình tròn, hình vành khăn. + Dạng 2.3. Tập hợp điểm của số phức là elíp. + Dạng 2.4. Bài toán liên quan đến giá trị lớn nhất, giá trị nhỏ nhất. + Dạng 2.5. Sử dụng bình phương vô hướng. + Dạng 2.6. Sử dụng hình chiếu và tương giao. BÀI 3 . PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐ PHỨC. + Dạng 3.1. Căn bậc hai của số phức. + Dạng 3.2. Phương trình bậc hai với hệ số phực. + Dạng 3.3. Tìm các thuộc tính của số phức thỏa mãn điều kiện K. + Dạng 3.4. Phương trình bậc hai và bậc cao trong số phức. + Dạng 3.5. Dạng lượng giác của số phức.
Bài toán cực trị số phức
Trước đây, khi đề thi THPT Quốc gia môn Toán, đề thi tuyển sinh Cao đẳng – Đại học còn ở dạng tự luận, thì bài toán liên quan đến số phức thường là bài toán dễ, học sinh nhanh chóng “ăn điểm” với bài toán này, tuy nhiên kể từ năm 2016 trở đi, với sự chuyển đổi hình thức thi môn Toán sang dạng trắc nghiệm, thì một số bài toán số phức được sử dụng cho mục đích phân loại học sinh khá – giỏi, trong đó phải kể đến các bài toán về cực trị số phức. Bài toán cực trị số phức bắt đầu được phổ biến kể từ năm học 2017 – 2018 khi Bộ Giáo dục và Đào tạo công bố đề thi minh họa THPT Quốc gia 2018 môn Toán, kể từ đó, các bài toán cực trị số xuất hiện khá nhiều trong các đề thi thử THPT Quốc gia môn Toán của các trường THPT, trường chuyên và sở GD&ĐT. Nhìn chung, các bài toán cực trị số phức được phân thành 2 dạng toán chính dựa theo phương pháp giải: bài toán cực trị số phức được giải theo phương pháp hình học, bài toán cực trị số phức được giải theo phương pháp đại số. Để giúp các em học sinh khối 12 có thể nắm được các kỹ thuật giải bài toán cực trị số phức, chia sẻ đến các em một tài liệu khá hay với nhiều bài toán cực trị số phức có đáp án và lời giải chi tiết, tài liệu gồm 51 trang, trong đó gồm hơn 100 bài toán, đây là các bài toán được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán. [ads] Trích dẫn tài liệu bài toán cực trị số phức: + Cho hai số phức z1, z2 đồng thời thỏa mãn hai điều kiện |z − 1| = √34 và |z + 1 + mi| = |z + m + 2i| trong đó m ∈ R, sao cho |z1 − z2| lớn nhất. Khi đó giá trị của |z1 + z2| bằng? + Gọi n là số các số phức z đồng thời thỏa mãn |iz + 1 + 2i| = 3 và biểu thức T = 2|z + 5 + 2i| + 3|z − 3i| đạt giá trị lớn nhất. Gọi M là giá trị lớn nhất của T. Giá trị của tích Mn là? + Trong các số phức z có phần ảo dương thỏa mãn |z^2 + 1| = 2|z|, gọi z1 và z2 lần lượt là các số phức có mô-đun nhỏ nhất và lớn nhất. Khi đó mô-đun của số phức w = z1 + z2 là?