Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán 9 ôn tập thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai bến sông A và B là 80km. Một canô đi xuôi dòng từ bến A đến bến B rồi quay lại bến A. Tổng thời gian canô chạy trên sông cả đi và về là 9 giờ. Tính vận tốc riêng của canô, biết rằng vận tốc của dòng nước là 2 km/h và giả sử vận tốc riêng của canô không đổi. + Công ty sữa Vinamilk chuyên sản xuất sữa Ông Thọ, hộp sữa có dạng hình trụ có đường kính 7cm, chiều cao là 8cm. Tính diện tích giấy làm nhãn mác cho 24 hộp sữa (một thùng) loại trên theo 2cm. Biết nhãn dán kín phần thân hộp sữa như hình vẽ và không tính phần mép dán. (Lấy pi = 3,14; kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn O và điểm A cố định nằm ngoài đường tròn. Qua điểm A vẽ tiếp tuyến AB với đường tròn O (B là tiếp điểm) và một đường thẳng d cắt đường tròn O tại hai điểm C D sao cho AC AD (đường thẳng d không đi qua tâm O). 1. Chứng minh tam giác ABC đồng dạng tam giác ADB. 2. Hạ BH vuông góc với OA tại H. Chứng minh: AH AO AC AD. 3. Chứng minh tứ giác DOHC là tứ giác nội tiếp và tia phân giác của HCA đi qua điểm cố định khi đường thẳng d thay đổi nhưng không đi qua tâm O.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Hưởng ứng “Ngày sách và Văn hóa đọc Việt Nam năm 2022”, một nhà sách đã có chương trình giảm giá cho tất cả các loại sách. Bạn Nam đến mua một quyển sách tham khảo môn Toán và một quyển sách tham khảo môn Ngữ văn với tổng giá ghi trên hai quyển sách đó là 195000 đồng. Nhưng do quyển sách tham khảo môn Toán được giảm giá 20% và quyển sách tham khảo môn Ngữ văn được giảm giá 35% nên bạn Nam chỉ phải trả cho nhà sách 138000 đồng để mua hai quyển sách đó. Hỏi giá ghi trên mỗi quyển sách tham khảo đó là bao nhiêu? + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết độ dài đoạn BC = 10 cm và sin ABC = 4/5. Tính độ dài các đoạn AC và BH. + Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AH (H thuộc BC). Kẻ HM vuông góc AB và HN vuông góc AC (M thuộc AB và N thuộc AC). a) Chứng minh AMHN là tứ giác nội tiếp. b) Đường thẳng MN cắt cung nhỏ AC của đường tròn (O) tại D. Chứng minh OA vuông góc MN và AD = AH.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long (khóa thi ngày 04 tháng 06 năm 2022). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Một xe máy và một ô tô cùng khởi hành đi từ thành phố A đến thành phố B cách nhau 120 km. Vì vận tốc của ô tô lớn hơn vận tốc của xe máy 10 km/h nên ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của xe máy. + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết AB = 3 cm, BC = 5 cm. a) Tính độ dài các đoạn thẳng AC và AH. b) Gọi I là trung điểm của AC, tính độ dài đoạn thẳng AI và số đo góc ABI (làm tròn đến độ). + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Vẽ hai đường cao BE và CF của tam giác ABC cắt nhau tại H (E thuộc AC và F thuộc AB). a) Chứng minh tứ giác AEHF nội tiếp được đường tròn. b) Chứng minh BH BE BF BA. c) Đường thẳng CF cắt đường tròn (O) tại D (D khác C). Gọi P, Q, I lần lượt là các điểm đối xứng của B qua AD, AC, CD; K là giao điểm của BP và AD. Chứng minh ba điểm P, I, Q thẳng hàng.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2022 - 2023 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho tứ giác ABCD nội tiếp đường tròn O sao cho hai tia BA và CD cắt nhau tại điểm E, hai tia AD và BC cắt nhau tại điểm F. Gọi G, H lần lượt là trung điểm của AC, BD. Đường phân giác của các góc BEC và AFB cắt nhau tại điểm K. Gọi L là hình chiếu vuông góc của K trên đường thẳng EF. Chứng minh rằng: a. DEF DFE EBF và KL LE LF. b. GED HEA và EG FH EH FG. c. 2. MB NB KH MC NA KG trong đó M là giao điểm của hai đường thẳng EK và BC, N là giao điểm của hai đường thẳng FK và AB. + Thầy Hùng viết các số nguyên 1, 2, 3, …, 2021, 2022 lên bảng. Thầy Hùng xóa đi 1010 số bất kì trên bảng. Chứng minh rằng trong các số còn lại trên bảng luôn tìm được: a. 3 số có tổng các bình phương là hợp số. b. 504 số có tổng các bình phương chia hết cho 4. + Tìm tất cả các số nguyên tố p sao cho tồn tại các số tự nhiên x, y thỏa mãn 3 3 x y xy p 6 8.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị; kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Trị : + Cho hàm số y = x2 có đồ thị (P) và đường thẳng (d): y = 2x – m (m là tham số). a) Vẽ (P). b) Tìm giá trị của m để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1. c) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1;y1) và (x2;y2) sao cho biểu thức Q đạt giá trị lớn nhất. + Nhằm phục vụ khán giả cổ vũ giải bóng đá U23 châu Á, một xưởng may phải may 2000 áo cổ động viên trong một số ngày quy định. Trong ba ngày đầu, mỗi ngày xưởng may đúng số áo theo kế hoạch. Từ ngày thứ tư, nhờ cải tiến kỹ thuật, mỗi ngày xưởng may được nhiều hơn 30 áo so với số áo phải may trong một ngày theo kế hoạch. Vì thế, trước khi hết thời hạn một ngày, xưởng đã may được 1980 áo. Hỏi theo kế hoạch, mỗi ngày xưởng phải may bao nhiêu áo? + Cho đường tròn (O) bán kính R, đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm P sao cho AP > R. Gọi M là tiếp điểm của tiếp tuyến thứ hai kẻ từ P của đường tròn (O). a) Chứng minh AOMP là tứ giác nội tiếp. b) Chứng minh BM // OP. c) Đường thẳng qua O vuông góc với AB cắt BM tại N, OM cắt PN tại J. i) Chứng minh AONP là hình chữ nhật. i) Gọi K là tâm của hình chữ nhật AONP và I là giao điểm của PM và ON, Chứng minh I, J, K thẳng hàng.