Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT

Tài liệu các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT gồm có 283 trang hướng dẫn phương pháp giải nhanh một số dạng bài tập trắc nghiệm môn Toán thường gặp trong đề thi THPT Quốc gia môn Toán, rất hữu ích dành cho học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi THPT QG. Các bài toán trong tài liệu được tác giả phân tích tỉ mỉ, đưa ra lời giải tự luận trước rồi mới giới thiệu một số “mẹo” giúp tìm nhanh đáp án, thông qua sự trợ giúp của máy tính cầm tay Casio / Vinacal … và một số công thức giải nhanh được thiết lập từ các bài toán tổng quát hóa. Khái quát nội dung tài liệu các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT: Phần I . Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm quan hệ giữa tính đơn điệu và đạo hàm của hàm số. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm cực trị của hàm số. + Chủ đề 3. Các phương pháp giải bài tập trắc nghiệm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Chủ đề 4. Các phương pháp giải bài tập trắc nghiệm đường tiệm cận của đồ thị. + Chủ đề 5. Các phương pháp giải bài tập trắc nghiệm điểm uốn của đồ thị – phép tịnh tiến hệ tọa độ. + Chủ đề 6. Các phương pháp giải bài tập trắc nghiệm sự tương giao của hai đồ thị. + Chủ đề 7. Các phương pháp giải bài tập trắc nghiệm sự tiếp xúc của hai đồ thị. + Chủ đề 8. Các phương pháp giải bài tập trắc nghiệm tiếp tuyến của đồ thị. Phần II . Hàm số lũy thừa, hàm số mũ và hàm số logarit. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm hàm số mũ và hàm số logarit. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm phương trình mũ và phương trình logarit. [ads] Phần III . Nguyên hàm, tích phân và ứng dụng. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm nguyên hàm. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm tích phân. Phần IV . Số phức. + Chủ đề 1. Số phức và các phép toán. + Chủ đề 2. Căn bậc hai của số phức – phương trình bậc hai + Chủ đề 3. Dạng lượng giác của số phức và ứng dụng. Phần V . Phương pháp tọa độ trong không gian + Chủ đề 1. Hệ tọa độ trong không gian. + Chủ đề 2. Phương trình mặt phẳng. + Chủ đề 3. Phương trình đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Bài toán thực tế liên quan đến hình học - Nguyễn Bá Hoàng
Tài liệu gồm 45 trang với các bài toán thực tế liên quan đến hình học thường xoay quanh một số nội dung như sau: Tính toán để đường đi được ngắn nhất, tính toán để diện tích được lớn nhất, hay cũng có thể đơn giản là tính diện tích hoặc thể tích của một vật. A. Nội dung kiến thức 1. Công thức tính chu vi, diện tích của các hình, thể tích của các khối hình 2. Cách tìm giá trị lớn nhất, nhỏ nhất của hàm số trên một đoạn, khoảng, nửa đoạn, nửa khoảng 3. Ứng dụng của tích phân trong việc tính diện tích hình phẳng, tính thể tích của khối tròn xoay B. Ví dụ minh hoạ: Gồm 17 ví dụ minh họa có phân tích và lời giải chi tiết C. Bài tập đề nghị: Gồm 83 bài toán trắc nghiệm thực tế liên quan đến hình học D. Hướng dẫn, đáp án [ads]
Bài toán thực tế và bài toán tối ưu min - max - Lê Viết Nhơn
Tài liệu gồm 23 trang tuyển chọn các bài toán thực tế và bài toán tối ưu min – max do thầy Lê Viết Nhơn sưu tầm và biên soạn, với nội dung gồm các phần: + Phần 1. Bài toán thực tế tối ưu+ Phần 2. Các bài toán thực tế liên quan đến tích phân + Phần 3. Bài toán thực tế liên quan đến mũ và lôgarit + Phần 4. Bài tập rèn luyện trích từ đề thi thử các trường THPT [ads] Trích dẫn tài liệu : + Một tấm kẽm hình vuông ABCD có cạnh bằng 30 cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. + Cho một tam giác đều ABC cạnh a. Người ta dựng một hình chữ nhật MNPQ có cạnh MN nằm trên cạnh BC, hai đỉnh P và Q theo thứ tự nằm trên hai cạnh AC và AB của tam giác. Xác định vị trí của điểm M sao cho hình chữ nhật có diện tích lớn nhất và tìm giá trị lớn nhất đó. + Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n) = 480 – 20n gam. Hỏi phải thả bao nhiêu cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất?
Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 - 2017 môn Toán - Đoàn Quỳnh
Sách gồm 246 trang với 2 phần: + Phần 1. Ôn tập theo chủ đề. Phần này ôn lại những kiến thức, kỹ năng cần thiết cùng một số câu trắc nghiệm theo 7 chủ đề chương trình Toán 12. + Phần 2. Một số đề tự luyện, đưa ra 9 đề, được biên soạn phỏng theo đề minh họa của Bộ GD và ĐT đã được công bố. Sách do Nhà xuất bản Giáo dục Việt Nam phát hành. [ads]
Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán - Trần Công Diêu
Sách gồm 449 trang với 11 chuyên đề: + Chuyên đề 1. Ứng dụng đạo hàm + Chuyên đề 2. Hàm số lũy thừa, mũ và logarit + Chuyên đề 3. Nguyên hàm, tích phân và ứng dụng + Chuyên đề 4. Số phức + Chuyên đề 5. Hình học không gian + Chuyên đề 6. Phương pháp tọa độ trong không gian + Chuyên đề 7. Lượng giác + Chuyên đề 8. Đại số tổ hợp và xác suất + Chuyên đề 9. Giới hạn, liên tục + Chuyên đề 10. Hình học Oxy + Chuyên đề 11. Phương trình, bất phương trình đại số [ads]