Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số nguyên tố

Nội dung Chuyên đề số nguyên tố Bản PDF - Nội dung bài viết Chuyên đề Số Nguyên Tố Chuyên đề Số Nguyên Tố Sytu rất hân hạnh giới thiệu đến quý Thầy, Cô giáo và các em học sinh tài liệu Chuyên đề Số Nguyên Tố do tác giả Trịnh Bình tổng hợp. Tài liệu này bao gồm 72 trang hướng dẫn cách giải các dạng toán tiêu biểu về số nguyên tố, giúp học sinh khối lớp 6 ôn tập chuẩn bị cho các kỳ thi Học Sinh Giỏi môn Toán. Nội dung tài liệu chuyên đề Số Nguyên Tố được tổ chức vào các phần sau: Phần 1: Tóm tắt lý thuyết cần nhớ 1. Định nghĩa số nguyên tố và một số định lý cơ bản về chúng. 2. Cách nhận biết và phân tích số nguyên tố. 3. Định lý Đirichlet, định lý Tchebycheff, và định lý Vinogradow. Phần 2: Các dạng toán thường gặp - Phần này tập trung vào việc giải các bài toán thực hành với các dạng toán từ lớp 1 đến lớp 9, như sử dụng phương pháp phân tích thừa số, tìm số nguyên tố thỏa mãn điều kiện, chứng minh số nguyên tố, áp dụng định lý Fermat, và nhiều vấn đề liên quan khác. Phần 3: Tuyển chọn các bài toán chia hết - Đây là phần tập hợp các bài toán quan trọng về quan hệ chia hết trong các đề thi Toán THCS. Phần 4: Hướng dẫn giải các bài toán chia hết - Cuối cùng, phần này cung cấp hướng dẫn cụ thể cho việc giải các bài toán chia hết thường gặp trong các đề thi Toán THCS. Với nội dung đa dạng, chi tiết và dễ hiểu, Chuyên đề Số Nguyên Tố sẽ là nguồn tư liệu hữu ích giúp các em học sinh nắm vững kiến thức và thành công trong học tập.

Nguồn: sytu.vn

Đọc Sách

Một số phương pháp giải phương trình nghiệm nguyên Tạ Văn Đức
Nội dung Một số phương pháp giải phương trình nghiệm nguyên Tạ Văn Đức Bản PDF - Nội dung bài viết Một số phương pháp giải phương trình nghiệm nguyênPhương pháp 1: Áp dụng tính chia hếtPhương pháp 2: Phương pháp lựa chọn ModuloPhương pháp 3: Sử dụng bất đẳng thứcPhương pháp 4: Phương pháp chặnPhương pháp 5: Sử dụng tính chất của số chính phươngPhương pháp 6: Phương pháp lùi vô hạnPhương pháp 7: Nguyên tắc cực hạnPhương pháp 8: Sử dụng mệnh đề cơ bản của số học Một số phương pháp giải phương trình nghiệm nguyên Trong môn Toán cấp Trung học Cơ sở, bài toán phương trình nghiệm nguyên là một chủ đề khá hay nhưng cũng khá khó đối với học sinh, dạng toán này thường xuyên xuất hiện trong các đề thi học sinh giỏi Toán lớp 8 – lớp 9. Để hỗ trợ việc bồi dưỡng học sinh giỏi Toán lớp 8 và Toán lớp 9, thầy Tạ Văn Đức đã biên soạn tài liệu giới thiệu một số phương pháp giải phương trình nghiệm nguyên. Dưới đây là khái quát về nội dung của tài liệu một số phương pháp giải phương trình nghiệm nguyên: Phương pháp 1: Áp dụng tính chia hết Phương trình dạng ax + by = c. Đưa về phương trình ước số. Phương pháp 2: Phương pháp lựa chọn Modulo Xét số dư hai vế. Sử dụng số dư để chỉ ra phương trình vô nghiệm. Phương pháp 3: Sử dụng bất đẳng thức Đối với các phương trình mà các biến có vai trò như nhau thì thường dùng phương pháp sắp xếp các biến. Áp dụng bất đẳng thức cổ điển. Áp dụng tính đơn điệu của từng vế. Dùng điều kiện delta ≥ 0 (hoặc delta' ≥ 0) để phương trình bậc hai có nghiệm. Phương pháp 4: Phương pháp chặn Chủ yếu dựa vào hai nhận xét sau: Không tồn tại n thuộc Z thỏa mãn a^2 < n^2 < (a + 1)^2 với a là một số nguyên. Nếu a^2 < n^2 < (a + 2)^2 (với a và n thuộc Z) thì n = a + 1. Phương pháp 5: Sử dụng tính chất của số chính phương Một số tính chất thường được sử dụng: Số chính phương không tận cùng bằng 2, 3, 7, 8. Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2. ... Phương pháp 6: Phương pháp lùi vô hạn Phương pháp này dùng để chỉ ra rằng ngoài nghiệm tầm thường x = y = z = 0 thì không còn nghiệm nào khác. Phương pháp 7: Nguyên tắc cực hạn Về mặt hình thức khác với phương pháp lùi vô hạn, nhưng về ý tưởng sử dụng thì tương tự, chứng minh phương trình ngoài nghiệm tầm thường không có nghiệm nào khác. Phương pháp 8: Sử dụng mệnh đề cơ bản của số học
Các dạng toán về biểu thức đại số
Nội dung Các dạng toán về biểu thức đại số Bản PDF - Nội dung bài viết Các dạng toán về biểu thức đại số Các dạng toán về biểu thức đại số Để đáp ứng nhu cầu của giáo viên và học sinh trung học cơ sở về các dạng toán về biểu thức đại số, chúng tôi đã tổng hợp và biên soạn nội dung học tập đa dạng, phong phú. Các bài toán trong chương trình sẽ giúp học sinh làm quen với các biểu thức đại số thông dụng, từ đơn giản đến phức tạp. Bên cạnh đó, giáo viên cũng được cung cấp tài liệu hướng dẫn giảng dạy chi tiết, từng bước giải thích rõ ràng giúp việc truyền đạt kiến thức trở nên dễ dàng hơn. Hy vọng rằng sản phẩm này sẽ giúp cả giáo viên và học sinh có một phương pháp học hiệu quả và thú vị hơn.
Các bài toán thực tế trong đề tuyển sinh vào 10 THPT
Nội dung Các bài toán thực tế trong đề tuyển sinh vào 10 THPT Bản PDF - Nội dung bài viết Cách giải các bài toán thực tế trong đề thi tuyển sinh vào 10 THPT Cách giải các bài toán thực tế trong đề thi tuyển sinh vào 10 THPT Để giúp học sinh chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 THPT, chúng tôi đã biên soạn tài liệu hướng dẫn giải các bài toán thực tế. Tài liệu này gồm 102 trang, cung cấp phương pháp giải chi tiết từng bước một để giúp học sinh hiểu rõ vấn đề và áp dụng vào thực tế. Trên thị trường hiện nay, có nhiều dạng bài toán mới được đưa vào đề thi tuyển sinh, nên việc nắm vững cách giải các bài toán thực tế là rất quan trọng. Chúng tôi hy vọng rằng tài liệu này sẽ giúp học sinh tự tin và thành công trong kỳ thi tuyển sinh sắp tới.
Các chuyên đề lớp 10 môn Toán ôn thi vào
Nội dung Các chuyên đề lớp 10 môn Toán ôn thi vào Bản PDF - Nội dung bài viết Các chuyên đề lớp 10 môn Toán ôn thi vào Các chuyên đề lớp 10 môn Toán ôn thi vào Được biên soạn từ 190 trang tư liệu, các chuyên đề lớp 10 môn Toán không chỉ giúp học sinh ôn thi hiệu quả mà còn giúp họ rèn luyện kỹ năng giải các bài toán một cách linh hoạt. A. Các bài toán rút gọn căn thức: - Dạng 1: Biểu thức dưới dấu căn là một số thực dương. - Dạng 2: Sử dụng hằng đẳng thức √A^2 = |A|. - Dạng 3: Biểu thức dưới dấu căn đưa được về hằng đẳng thức √A^2 = |A|. - Dạng 4: Rút gọn tổng hợp bằng cách sử dụng trục căn thức, hằng đẳng thức, phân tích thành nhân tử. - Dạng 5: Bài toán chứa ẩn dưới dấu căn và các ý toán phụ. B. Các bài toán giải hệ phương trình: - Giải hệ phương trình và một số ý phụ. - Giải hệ phương trình bậc cao. C. Giải bài toán bằng cách lập hệ phương trình: - Dạng 1: Toán về quan hệ số. - Dạng 2: Toán chuyển động. - Dạng 3: Toán về năng suất, khối lượng công việc, phần trăm. - Dạng 4: Toán có nội dung hình học. - Dạng 5: Các dạng toán khác. D. Giải bài toán bằng cách lập phương trình bậc hai: - Dạng 1: Toán về quan hệ số. - Dạng 2: Toán chuyển động. - Dạng 3: Toán về năng suất, khối lượng công việc, phần trăm. - Dạng 4: Toán có nội dung hình học. - Dạng 5: Các dạng toán khác. E. Hàm số bậc nhất: F. Hàm số bậc hai: - Sự tương giao giữa đường thẳng và đồ thị hàm số bậc hai. G. Phương trình bậc hai một ẩn, hệ thức Vi-et và ứng dụng: - Dạng 1: Giải phương trình và phương trình quy về phương trình bậc hai. - Dạng 2: Hệ thức Vi-et và ứng dụng. - Dạng 3: Phương trình chứa tham số. H. Bất đẳng thức: - Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên. - Kỹ thuật chọn điểm rơi trong bài toán cực trị đạt được tại tâm.