Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Sơn La

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Sơn La; đề được biên soạn theo hình thức 20% trắc nghiệm + 80% tự luận (theo điểm số), phần trắc nghiệm gồm 10 câu, phần tự luận gồm 05 câu, thời gian làm bài 120 phút; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 14 tháng 06 năm 2021. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Sơn La : + Một trường THPT nhận được 650 hồ sơ đăng kí thi tuyển sinh vào lớp 10 với hai hình thức: đăng kí trực tuyến và đăng kí trực tiếp tại nhà trường. Số hồ sơ đăng kí trực tuyến nhiều hơn số hồ sơ đăng kí trực tiếp là 120 hồ sơ. Hỏi nhà trường đã nhận bao nhiêu hồ sơ đăng kí trực tuyến? + Cho tam giác ABC nhọn có đường cao AD và H là trực tâm tam giác. Vẽ đường tròn tâm I đường kính BC, từ A kẻ các tiếp tuyến AM AN với đường tròn I (M N là các tiếp điểm). a) Chứng minh tứ giác AMIN nội tiếp đường tròn. b) Chứng minh AMN ADN và AHN AND. c) Chứng minh ba điểm M H N thẳng hàng. + Cho parabol 2 P y x và hai điểm A(-3;9), B(2;4). Tìm điểm M có hoành độ thuộc khoảng (-3;2) trên (P) sao cho diện tích tam giác MAB lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội được biên soạn nhằm giúp các em học sinh lớp 9 đang học tập tại các trường THCS trên địa bàn quận Hai Bà Trưng, Hà Nội nắm được dạng đề và rèn luyện để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT trong thời gian sắp tới, đề thi có lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán 2018 trường THCS Thái Thịnh - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 trường THCS Thái Thịnh – Hà Nội được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 15 tháng 05 năm 2018, đề nhằm giúp các em học sinh lớp 9 làm quen với hình thức thi cử, nắm được cấu trúc đề, các dạng toán thường gặp trong đề tuyển sinh vào lớp 10 môn Toán, để các em rèn luyện, chuẩn bị cho kỳ thi vượt cấp sắp tới, đề thi có đáp án và lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường THCS Mỹ Xá - Nam Định
Đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 trường THCS Mỹ Xá – Nam Định gồm 2 trang với 2 phần: phần trắc nghiệm khách quan gồm 8 câu hỏi, phần tự luận gồm 5 bài toán, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 : + Cho hình chữ nhật ABCD có AB = 3cm, CB = 4cm. Quay hình chữ nhật đó một vòng quanh cạnh AB được một hình trụ. Thể tích hình trụ đó bằng? + Giá trị của m để đường thẳng y = x – 2 và đường thẳng y = 2x + m – 1 cắt nhau tại một điểm nằm trên trục tung là? [ads] + Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Đường chéo AC và BD cắt nhau tại E. Gọi F là hình chiếu của E trên AD. Đường thẳng CF cắt đường tròn tại điểm thứ hai là M (M khác C). Gọi N là giao điểm của BD và CF. 1. Chứng minh tứ giác ABEF và tứ giác CDFE là các tứ giác nội tiếp. 2. Chứng minh FA là tia phân giác của góc BFM và BE.DN = EN.BD. 3. Gọi K là trung điểm của DE. Chứng minh tứ giác BCKF nội tiếp.
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy - Nam Định
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy – Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán THPT năm 2018 : + Cắt một hình cầu bởi một mặt phẳng cách tâm hình cầu 4dm. Biết bán kính hình cầu bằng 5dm. Chu vi mặt cắt bằng? + Cho tam giác IAB vuông tại I. Quay tam giác IAB một vòng quanh cạnh IA cố định ta được một hình? [ads] + Trong mặt phẳng tọa độ Oxy cho Parabol 2 (P): y = x^2 và đường thẳng (d): y = 4x + 1 – m. 1) Cho m = 4, hãy tìm tất cả các hoành độ giao điểm của (d) và (P). 2) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm có tung độ là y1; y2 thỏa mãn √y1.√y2 = 5.