Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hàm số lũy thừa, hàm số mũ và hàm số logarit - Lê Quang Xe

Tài liệu gồm 144 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tổng hợp lý thuyết cần nhớ, các dạng toán cơ bản và bài tập tự luyện chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, giúp học sinh lớp 12 tham khảo, rèn luyện khi học chương trình Giải tích 12 chương 2. BÀI 1 . LŨY THỪA. 1.1. LÝ THUYẾT CẦN NHỚ. 1.1.1. Lũy thừa với số mũ nguyên. 1.1.2. Lũy thừa với số mũ hữu tỉ. 1.1.3. Lũy thừa với số mũ vô tỉ. 1.1.4. Công thức biến đổi lũy thừa cần nhớ. 1.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 1.1. Tính giá trị biểu thức. Dạng 1.2. Rút gọn biểu thức liên quan đến lũy thừa. Dạng 1.3. So sánh hai lũy thừa. 1.3. BÀI TẬP TỰ LUYỆN. BÀI 2 . HÀM SỐ LŨY THỪA. 2.1. LÝ THUYẾT CẦN NHỚ. 2.1.1. Khái niệm. 2.1.2. Đồ thị hàm lũy thừa. 2.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 2.1. Tìm tập xác định của hàm số lũy thừa. Dạng 2.2. Tìm đạo hàm của hàm số lũy thừa. Dạng 2.3. Đồ thị của hàm số lũy thừa. 2.3. BÀI TẬP TỰ LUYỆN. BÀI 3 . LÔGARIT. 3.1. LÝ THUYẾT CẦN NHỚ. 3.1.1. Định nghĩa. 3.1.2. Tính chất. 3.1.3. Các công thức lôgarit cần nhớ. 3.1.4. Lôgarít thập phân và lôgarit tự nhiên. 3.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 3.1. So sánh hai lôgarit. Dạng 3.2. Công thức, tính toán lôgarit. Dạng 3.3. Phân tích biểu thức lôgarit theo các lô-ga-rit cho trước. Dạng 3.4. Xác định một số nguyên dương có bao nhiêu chữ số. Dạng 3.5. Tổng hợp biến đổi lôgarit nâng cao. 3.3. BÀI TẬP TỰ LUYỆN. BÀI 4 . HÀM SỐ MŨ, HÀM SỐ LÔGARIT. 4.1. LÝ THUYẾT CẦN NHỚ. 4.1.1. Hàm số mũ. 4.1.2. Hàm số lôgarit. 4.1.3. Liên hệ đồ thị của hai hàm số. 4.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 4.1. Tìm tập xác định. Dạng 4.2. Tính đạo hàm. Dạng 4.3. Giá trị lớn nhất và giá trị nhỏ nhất. Dạng 4.4. Các bài toán liên quan đến đồ thị. 4.3. BÀI TẬP TỰ LUYỆN. BÀI 5 . PHƯƠNG TRÌNH MŨ, PHƯƠNG TRÌNH LOGARIT CƠ BẢN. 5.1. LÝ THUYẾT CẦN NHỚ. 5.1.1. Công thức nghiệm của phương trình mũ. 5.1.2. Công thức nghiệm của phương trình lôgarit. 5.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 5.1. Giải phương trình mũ cơ bản, phương pháp đưa về cùng cơ số. Dạng 5.2. Giải phương trình mũ bằng phương pháp đặt ẩn phụ. Dạng 5.3. Giải phương trình mũ bằng phương pháp lôgarít hóa. Dạng 5.4. Giải phương trình lôgarit cơ bản, phương pháp đưa về cùng cơ số. Dạng 5.5. Giải phương trình lôgarít bằng phương pháp đặt ẩn phụ. Dạng 5.6. Giải phương trình mũ và lôgarít bằng phương pháp hàm số. 5.3. BÀI TẬP TỰ LUYỆN. BÀI 6 . BẤT PHƯƠNG TRÌNH MŨ, BẤT PHƯƠNG TRÌNH LOGARIT CƠ BẢN. 6.1. LÝ THUYẾT CẦN NHỚ. 6.1.1. Công thức nghiệm của bất phương trình mũ. 6.1.2. Công thức nghiệm của bất phương trình lôgarit. 6.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 6.1. Giải BPT mũ cơ bản, phương pháp đưa về cùng cơ số. Dạng 6.2. Giải bất phương trình mũ bằng phương pháp đặt ẩn phụ. Dạng 6.3. Giải BPT logarit bằng phương pháp đưa về cùng cơ số. Dạng 6.4. Giải bất phương trình lôgarit bằng phương pháp đặt ẩn phụ. Dạng 6.5. Bài toán lãi kép. 6.3. BÀI TẬP TỰ LUYỆN. BÀI 7 . PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH MŨ, LOGARIT CÓ CHỨA THAM SỐ. 7.1. CÁC DẠNG TOÁN CƠ BẢN. Dạng 7.1. Phương trình có nghiệm đẹp – Định lý Viét. Dạng 7.2. Phương trình không có nghiệm đẹp – Phương pháp hàm số. Dạng 7.3. Bất phương trình – Phương pháp hàm số. 7.2. BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Bài toán GTLN - GTNN biểu thức mũ - lôgarit nhiều biến số
Tài liệu gồm 36 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán GTLN – GTNN biểu thức mũ – lôgarit nhiều biến số; đây là dạng toán VDC thường gặp trong chương trình Toán 12 phần Giải tích chương 2. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT HAI BIẾN SỐ Cách 1: Đánh giá áp dụng BĐT cơ bản đã biết như BĐT Côsi và BĐT Bunhiacopxki. Cách 2: Áp dụng phương pháp hàm số, hàm đặc trưng. Thông thường ta thực hiện theo các bước sau: Biến đổi các số hạng chứa trong biểu thức về cùng một đại lượng giống nhau. Đưa vào một biến mới t bằng cách đặt t bằng đại lượng đã được biến đổi như trên. Xét hàm số f t theo biến t. Khi đó ta hình thành được bài toán tương đương sau: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Lúc này ta sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Chú ý : Ta chứng minh được: Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D mà phương trình fx k có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và hàm số y gx luôn nghịch biến (hoặc luôn đồng biến) và liên tục trên D mà phương trình f x gx có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D thì fx fy nếu x y (hoặc x y). Cách 3: Áp dụng hình học giải tích. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT NHIỀU BIẾN SỐ Cho xyz lần lượt là các số thực dương và thỏa mãn hệ phương trình sau 3log 3 3log 27 log 81 0 x y 3 3 x z xy yz. Khi biểu thức 5 4 P xyz đạt giá trị nhỏ nhất thì giá trị của 1000P nằm trong khoảng nào? Cho các số thực không âm abc thỏa mãn 2484 abc. Gọi M m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S a b c 2 3. Giá trị của biểu thức 4 log M M m bằng? Cho ba số thực thay đổi abc 1 thỏa mãn abc 6. Gọi 1 2 x x là hai nghiệm của phương trình 2 log 2 log 3log log 2022 0 a a aa x b cx. Khi đó giá trị lớn nhất của 1 2 x x là?
Tìm điều kiện của x để bất phương trình mũ - lôgarit đúng với y thỏa mãn điều kiện
Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Tìm điều kiện của x để bất phương trình mũ – lôgarit đúng với y thỏa mãn điều kiện cho trước; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. PHƯƠNG PHÁP: Bước 1 : Biến đổi bất phương trình về dạng f a f b f a f b f a f b f a f b. Bước 2 : Xét hàm số y f x chứng minh hàm số luôn đồng biến, hoặc luôn nghịch biến Bước 3 : Do tính chất đồng biến hoặc nghịch biến của hàm số f a f b a b nếu hàm số đồng biến f a f b a b nếu hàm số nghịch biến. Cho các số nguyên dương x y không lớn hơn 4022. Biết mỗi giá trị của y luôn có ít nhất 2021 giá trị của x thỏa mãn bất phương trình 2 2 3 3 log 3 3 x y y x y xx y. Hỏi có bao nhiêu giá trị của y? Có bao nhiêu số nguyên dương y sao cho ứng với mỗi giá trị của y bất phương trình log 11 log 0 3 3 x x y x có nghiệm nguyên x và có không quá 10 số nguyên x thỏa mãn? Cho các số x y a thoả mãn 1 2048 1 x y a và 1 2 2 log 1 2 2 1 x a a x xy x y x a y a. Có bao nhiêu giá trị của a 100 để luôn có 2048 cặp số nguyên x y? Gọi S là tập tất cả các giá trị nguyên của y để bất phương trình 2 3 2 2 2 log 3 3 log 3 log y xy xy y. Có bao nhiêu giá trị nguyên của x để tập hợp S có đúng 9 phần tử?
Đồ thị hàm hợp chứa mũ - lôgarit
Tài liệu gồm 17 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Đồ thị hàm hợp chứa mũ – lôgarit; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. Cho hàm số y f x liên tục trên và có đồ thị hàm số y f x được mô tả như hình vẽ bên. Phương trình 2 f x x x 2 1 2ln 1 có bao nhiêu nghiệm phân biệt biết rằng f 0 1 và y f x là hàm đa thức? Cho hàm số bậc bốn f x có đồ thị như hình vẽ sau. Có bao nhiêu giá trị nguyên của m thuộc [-2021;2021] để phương trình sau có hai nghiệm dương phân biệt? Cho hàm số y f x là hàm số chẵn trên tập số thực và có đồ thị như hình vẽ. Biết rằng tồn tại các giá trị của tham số m để phương trình 2 2 2 3 3 4 3 3 3 3 0 f x f x m f x m có đúng 7 nghiệm thực phân biệt. Tổng lập phương các giá trị đó của m là? Cho hàm số y f x có đạo hàm trên và có bảng biến thiên sau: Có bao nhiêu giá trị nguyên của m để phương trình sau có đúng 2 nghiệm phân biệt? Cho hàm số y f x có đồ thị như hình vẽ. Biết f 3 10. Có bao nhiêu giá trị nguyên của m để phương trình 2 x f f f e m có bốn nghiệm.
Các dạng toán về đồ thị hàm số lũy thừa - mũ - lôgarit
Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Các dạng toán về đồ thị hàm số lũy thừa – mũ – lôgarit; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. a/ Hàm số lũy thừa y x (là hằng số) Số mũ α Hàm số y x Tập xác định D n (n nguyên dương) n y x D n (n nguyên dương âm hoặc n 0) n y x D 0 là số thực không nguyên y x D 0. Lưu ý: Hàm số 1 n y x không đồng nhất với hàm số n y x n. b/ Hàm số mũ 0 1 x y a a a. Tập xác định: D. Tập giá trị: T 0. Tính đơn điệu Nhận trục hoành làm tiệm cận ngang. Dạng đồ thị. c/ Hàm số logarit log 0 1 a y x a a Tập xác định: D 0 Tập giá trị: T Tính đơn điệu Nhận trục tung làm tiệm cận đứng. Dạng đồ thị: Khi hàm số đồng biến. Khi hàm số nghịch biến. Gọi A và B là các điểm lần lượt nằm trên các đồ thị hàm số 2 y x log và 1 2 y x log sao cho điểm M 2 0 là trung điểm của đoạn thẳng AB. Diện tích tam giác OAB là bao nhiêu biết rằng O là gốc tọa độ? Với a 1. Biết trên đồ thị của ba hàm số log 2log 3log a a a y x y x y x lần lượt có 3 điểm A B C sao cho tam giác ABC vuông cân tại B AB song song với trục hoành và có diện tích bằng 18. Giá trị của a bằng? Cho hàm số 2 x y và 2 2 x y có đồ thị lần lượt là C1 C2 như hình vẽ. Gọi A là điểm thuộc C1 B C là các điểm thuộc C2 sao cho tam giác ABC là tam giác đều và AB song song với Ox. Khi đó tọa độ điểm C là p q giá trị của biểu thức 2 p q bằng?