Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2

Tài liệu gồm 213 trang được sưu tầm và biên soạn bởi thầy giáo Ths. Nguyễn Chín Em, phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2. Với mỗi câu hỏi và bài toán trong đề thi, tài liệu bổ sung thêm nhiều câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. 50 dạng toán phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2: + Dạng toán 1. Hoán vị – Chỉnh hợp – Tổ hợp. + Dạng toán 2. Cấp số cộng. + Dạng toán 3. Phương trình Mũ – Logarits (phương trình mũ). + Dạng toán 4. Thể tích khối đa diện (Khối lập phương). + Dạng toán 5. Hàm số Mũ – Hàm số Logarits (hàm số Logarits). + Dạng toán 6. Nguyên hàm – Tích phân(Nguyên hàm). + Dạng toán 7. Thể tích khối đa diện (Khối chóp). + Dạng toán 8. Khối Nón – Trụ – Cầu (Công thức thể tích khối Nón). + Dạng toán 9. Khối Nón – Trụ – Cầu (Diện tích mặt cầu). + Dạng toán 10. Tính đơn điệu hàm số (Tìm khoảng đơn điệu khi biết bảng biến thiên). + Dạng toán 11. Logarits (Rút gọn biểu thức Logarits đơn giản). + Dạng toán 12. Khối Nón – Trụ – Cầu (Công thức diện tích xung quanh của trụ). + Dạng toán 13. Cực trị của hàm số (Tìm điểm cực trị khi biết bảng biến thiên). + Dạng toán 14. Khảo sát và vẽ đồ thị hàm số (Tìm hàm số khi biết đồ thị). + Dạng toán 15. Tiệm cận (Tìm tiệm cận ngang của hàm số). + Dạng toán 16. Bất phương trình Mũ – Logarits (Giải bất phương trình Logarit). + Dạng toán 17. Sự tương giao đồ thị (Đếm số nghiệm của phương trình khi biết đồ thị). + Dạng toán 18. Nguyên hàm – Tích phân (Tính tích phân dựa vào tính chất tích phân). + Dạng toán 19. Số phức (Tìm số phức liên hợp). + Dạng toán 20. Số phức (Tìm phần thực của tổng của hai số phức). + Dạng toán 21. Số phức (Tìm điểm biểu diễn của số phức). + Dạng toán 22. Hệ Oxyz (Tìm tọa độ hình chiếu của điểm lên mặt phẳng tọa độ). + Dạng toán 23. Hệ Oxyz (Tìm tọa độ tâm mặt cầu). + Dạng toán 24. Phương trình mặt phẳng (Tìm tọa đọ véc tơ pháp tuyến). + Dạng toán 25. Phương trình đường thẳng (Tìm tọa độ điểm thuộc đường thẳng đã cho). [ads] + Dạng toán 26. Quan hệ vuông góc trong không gian (Tìm góc giữa đường thẳng và mặt phẳng). + Dạng toán 27. Cực trị của hàm số (Tìm số điểm cực trị khi biết bảng biến thiên). + Dạng toán 28. GTLN và GTNN (Tìm GTLN – GTNN của hàm số trên đoạn). + Dạng toán 29. Logarits (Biểu diễn các tham số trong biểu thức Logarits đơn giản). + Dạng toán 30. Khảo sát và vẽ đồ thị hàm số (Tìm số giao điểm của đồ thị hàm số và trục hoành). + Dạng toán 31. Bất phương trình Mũ – Logarits (Giải Bphương trình Mũ). + Dạng toán 32. Mặt Nón – Trụ – Cầu (Tính diện tích xung quanh hình nón ). + Dạng toán 33. Nguyên hàm – Tích phân (Nhận dạng tích phân khi đổi biến). + Dạng toán 34. Ứng dụng tích phân (Tính diện tích hình phẳng). + Dạng toán 35. Số phức (Tìm phần ảo của tích hai số phức). + Dạng toán 36. Số phức (Phương trình bậc hai với hệ số thực). + Dạng toán 37. Phương trình đường thẳng trong Oxyz (Tổng hợp liên quan đường thẳng và mặt phẳng). + Dạng toán 38. Phương trình đường thẳng trong Oxyz (Lập phương trình đồ thị qua hai điểm). + Dạng toán 39. Tổ hợp – Xác suất (Tính xác suất biến cố). + Dạng toán 40. Khoảng cách (Khoảng cách giữa hai đường thẳng chéo nhau). + Dạng toán 41. Tính đơn điệu của hàm số (Tìm m để hàm số đồng biến trên R). + Dạng toán 42. Hàm số Mũ – Hàm số Logarits (Bài toán thực tế). + Dạng toán 43. Khảo sát và vẽ đồ thị hàm số (Nhận dạng các hệ số của hàm phân thức khi biết bảng biến thiên). + Dạng toán 44. Khối Nón – Trụ – Cầu (Bài toán thực tế tính thể tích của khối trụ). + Dạng toán 45. Nguyên hàm – Tích Phân (Tính tích phân hàm ẩn). + Dạng toán 46. Khảo sát và vẽ đồ thị hàm số (Tìm số nghiệm của phương trình liên quan đến sinx khi biết bảng biến thiên). + Dạng toán 47. Hàm số Mũ – Logarits (Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào biểu thức mũ – logarits). + Dạng toán 48. GTLN – GTNN (Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn). + Dạng toán 49. Thể tích khối đa diện (Thể tích khối đa diện cắt ra từ một khối khác). + Dạng toán 50. Phương trình Mũ – Logarits (Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình Logarits chứa hai ẩn).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phát triển VD - VDC trong đề tham khảo TN THPT 2024 môn Toán
Tài liệu gồm 513 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, phát triển các bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong đề tham khảo thi tốt nghiệp THPT năm 2024 môn Toán của Bộ Giáo dục và Đào tạo (từ câu 39 đến câu 50), có đáp án và lời giải chi tiết.
Phát triển các bài toán VD - VDC trong đề tham khảo TN THPT 2024 môn Toán
Tài liệu gồm 107 trang, được biên soạn bởi quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán, phát triển các bài toán vận dụng – vận dụng cao trong đề tham khảo tốt nghiệp THPT năm 2024 môn Toán, có đáp án và lời giải chi tiết. CÂU TƯƠNG TỰ CÂU 39 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 40 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 41 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 42 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 43 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 44 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 45 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 46 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 47 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 48 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 49 ĐỀ THAM KHẢO TN THPT 2024. CÂU TƯƠNG TỰ CÂU 50 ĐỀ THAM KHẢO TN THPT 2024.
50 chuyên đề phát triển bám sát đề tham khảo TN THPT 2024 môn Toán
Tài liệu gồm 438 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tuyển tập 50 chuyên đề phát triển bám sát đề tham khảo tốt nghiệp THPT năm 2024 môn Toán. MỤC LỤC : Dạng 1: Tìm giá trị cực đại, cực tiểu của hàm số thông qua bảng biến thiên. Dạng 2: Tìm nguyên hàm của hàm số cơ bản. Dạng 3: Tìm tập nghiệm của phương trình logarit cơ bản. Dạng 4: Tìm tọa độ vectơ đơn giản khi biết tọa độ điểm. Dạng 5: Tìm tiệm cận ngang của đồ thị hàm số hữu tỷ b1/b1. Dạng 6: Tìm hàm số khi biết bảng biến thiên. Dạng 8: Tìm vectơ chỉ phương của đường thẳng. Dạng 9: Tìm số phức khi biết điểm biểu diễn trên mp tọa độ. Dạng 10: Tìm phương trình mặt cầu khi biết tọa độ tâm và bán kính cụ thể. Dạng 11: Thu gọn biểu thức logarit cho trước. Dạng 12: Tìm khoảng đồng biến, nghịch biến của hàm số khi biết đồ thị hàm số. Dạng 13: Tìm thể tích khối lăng trụ khi biết diện tích đáy và chiều cao. Dạng 14: Tìm tập nghiệm của BPT mũ cơ bản. Dạng 15: Xét sự biến thiên của hàm số mũ và logarit. Dạng 16: Tìm tọa độ vectơ pháp tuyến của mặt phẳng cơ bản cho trước. Dạng 17: Tìm điểm cực trị của hàm số khi biết đạo hàm y’. Dạng 18: Tính tích phân của hàm số cơ bản sử dụng tính chất. Dạng 19: Tính tích phân cơ bản sử dụng định nghĩa và tính chất. Dạng 20: Tính thể tích khối chóp khi biết diện tích đáy và chiều cao. Dạng 21: Tìm tổng hai số phức. Dạng 22: Xác định các yếu tố liên qua đến hình nón. Dạng 23: Bài toán sử dụng hoán vị, chỉnh hợp, tổ hợp cơ bản. Dạng 24: Tìm nguyên hàm của hàm số mũ cơ bản. Dạng 25: Bài toán tương giao của hai đồ thị. Dạng 26: Tìm các yếu tố liên quan đến hình trụ. Dạng 27: Tìm các yếu tố liên quan đến cấp số cộng. Dạng 28: Tìm phần thực, phần ảo của số phức đơn giản. Dạng 29: Tìm phần thực, phần ảo của số phức có liên quan đến số phức cho trước. Dạng 30: Tìm góc của hai đường thẳng (hình học không gian 11). Dạng 31: Tìm khoảng cách điểm A đến mặt phẳng (hình học không gian 11). Dạng 32: Tìm khoảng đồng biến, nghịch biến khi biết đạo hàm y’. Dạng 33: Tìm xác suất dùng định nghĩa. Dạng 34: Tính tích phân sử dụng tính chất và định nghĩa. Dạng 35: Tính GTLN – GTNN của hàm số. Dạng 36: Biến đổi biểu thức logarit. Dạng 37: Tìm phương trình mặt cầu có tâm và đi qua một điểm cho trước. Dạng 38: Viết PTĐT đi qua một điểm và song song với một đường thẳng cho trước. Dạng 39: Tính giá trị của biểu thức logarit thỏa ĐK cho trước. Dạng 40: Tìm số giá trị tham số m nguyên để hàm số đơn điệu trên khoảng cho trước. Dạng 41: Tính tích phân của hàm số khi biết diện tích hình phẳng tạo bởi các đồ thị hàm số. Dạng 42: Tìm modun của tổng hai số phức thỏa các điều kiện cho trước. Dạng 43: Tính thể tích lăng trụ biết yếu tố về góc cho trước. Dạng 44: Tìm phương trình mặt phẳng thỏa mãn các điều kiện cho trước. Dạng 45: Tính thể tích khối trụ – ứng dụng thực tế. Dạng 46: Tìm GTLN – GTNN của hàm số logarit. Dạng 47: Tìm GTLN – GTNN của modun tổng, hiệu các số phức thỏa ĐK cho trước. Dạng 48: Tính thể tích của vật thể (ứng dụng tích phân vào thực tế). Dạng 49: Tìm giá trị nguyên của tham số m liên qua đến đạo hàm và hàm số hợp. Dạng 50: Bài toán liên quan đến ứng dụng để tìm cực trị hình học trong KG Oxyz.
Tách phân dạng toán đề thi TN THPT môn Toán (2017 - 2023) phần Hình học
Tài liệu gồm 239 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Hình học, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ THỂ TÍCH KHỐI ĐA DIỆN 2. BÀI 1 – KHÁI NIỆM KHỐI ĐA DIỆN 2. Tóm tắt lý thuyết cơ bản 2. Dạng toán cơ bản 3. + Dạng ➀: Câu hỏi về đỉnh, cạnh, mặt của một khối đa diện 3. + Dạng ➁: Phân chia, lắp ghép các khối đa diện 3. BÀI 2 – KHỐI ĐA DIỆN LỒI – ĐA DIỆN ĐỀU 5. Tóm tắt lý thuyết cơ bản 5. Dạng toán cơ bản 6. + Dạng ➀: Tính chất đối xứng và tính chất HH khác của khối đa diện 6. BÀI 3 – THỂ TÍCH KHỐI CHÓP 8. Tóm tắt lý thuyết cơ bản 8. Dạng toán cơ bản 10. + Dạng ➀: Câu hỏi dạng lý thuyết (công thức V, h, B; có sẵn h, B) 10. + Dạng ➁: Tính thể tích các khối chóp liên quan cạnh bên vuông góc đáy 14. + Dạng ➂: Thể tích khối chóp đều 19. + Dạng ➃: Thể tích khối chóp khác 24. + Dạng ➄: Tỉ số thể tích trong khối chóp 36. BÀI 4 – THỂ TÍCH KHỐI LĂNG TRỤ 42. Tóm tắt lý thuyết cơ bản 42. Dạng toán cơ bản 43. + Dạng ➀: Câu hỏi dạng lý thuyết (công thức V, h, B ; có sẵn h, B) 43. + Dạng ➁: Diện tích xung quanh, diện tích toàn phần và câu hỏi liên quan thể tích lăng trụ đứng 45. + Dạng ➂: Thể tích khối lăng trụ đều 59. + Dạng ➃: Câu hỏi liên quan đến thể tích (góc, khoảng cách) 61. + Dạng ➄: Bài toán cực trị 63. + Dạng ➅: Bài toán thực tế về khối đa diện 65. CHUYÊN ĐỀ MẶT TRÒN XOAY 66. BÀI 1 – MẶT NÓN 66. Tóm tắt lý thuyết cơ bản 66. Dạng toán cơ bản 66. + Dạng ➀: Câu hỏi lý thuyết về khối nón 66. + Dạng ➁: Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản 67. + Dạng ➂: Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối nón 84. + Dạng ➃: Khối nón kết hợp khối đa diện 88. + Dạng ➄: Bài toán cực trị về khối nón 88. BÀI 2 – MẶT TRỤ 90. Tóm tắt lý thuyết cơ bản 90. Dạng toán cơ bản 90. + Dạng ➀: Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản 90. + Dạng ➁: Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ 101. + Dạng ➂: Bài toán cực trị về khối trụ 102. + Dạng ➃: Bài toán thực tế về khối trụ 103. + Dạng ➄: Thể tích khối tròn xoay 109. + Dạng ➅: Khối tròn xoay nội tiếp, ngoại tiếp và kết hợp khối đa diện 110. BÀI 3 – MẶT CẦU 112. Tóm tắt lý thuyết cơ bản 112. Dạng toán cơ bản 113. + Dạng ➀: Câu hỏi chỉ liên quan đến biến đổi V, S, R 113. + Dạng ➁: Khối cầu nội – ngoại tiếp, liên kết khối đa diện 116. + Dạng ➂: Bài toán tổng hợp về khối nón, khối trụ, khối cầu 124. CHUYÊN ĐỀ PHƯƠNG PHÁP TỌA ĐỘ TRONG KG OXYZ 130. BÀI 1 – HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN OXYZ 130. Tóm tắt lý thuyết cơ bản 130. Dạng toán cơ bản 132. + Dạng ➀: Liên quan tọa độ điểm, véc – tơ trong hệ trục Oxyz 132. + Dạng ➁: Tích vô hướng và ứng dụng (độ dài, góc, khoảng cách) 137. + Dạng ➂: Xác định tâm, bán kính, diện tích, thể tích của cầu 138. + Dạng ➃: Viết phương trình mặt cầu 142. + Dạng ➄: Vị trí tương đối của hai mặt cầu, điểm với mặt cầu 146. + Dạng ➅: Các bài toán cực trị liên quan đến điểm, mặt cầu 156. BÀI 2 – PHƯƠNG TRÌNH ĐƯỜNG THẲNG 162. Tóm tắt lý thuyết cơ bản 162. Dạng toán cơ bản 164. + Dạng ➀: Viết phương trình đường thẳng biết yếu tố điểm, vectơ, song song hay vuông góc (với đường thẳng, mặt phẳng) 165. + Dạng ➁: Viết phương trình đường thẳng liên quan đến tương giao 182. + Dạng ➂: Viết phương trình đường thẳng liên quan đến góc, khoảng cách, diện tích 186. + Dạng ➃: Tọa độ điểm liên quan đến đường thẳng và bài toán liên quan 191. + Dạng ➄: Phương trình mặt phẳng liên quan đến đường thẳng 194. + Dạng ➅: Bài toán về khoảng cách liên quan đến đường thẳng 195. + Dạng ➆: Câu hỏi về VTTĐ liên quan đến đường thẳng (song song, nằm trên) 196. + Dạng ➇: Hình chiếu của điểm lên đường thẳng và bài toán liên quan 196. BÀI 3 – PHƯƠNG TRÌNH MẶT PHẲNG 198. Tóm tắt lý thuyết cơ bản 198. Dạng toán cơ bản 199. + Dạng ➀: Xác định VTPT 200. + Dạng ➁: Viết phương trình mặt phẳng không dùng PT đường thẳng 203. + Dạng ➂: Vị trí tương đối liên quan mặt phẳng – điểm 214. + Dạng ➃: Tìm tọa độ điểm liên quan đến mặt phẳng 215. + Dạng ➄: Viết phương trình mặt cầu liên quan đến mặt phẳng 217. + Dạng ➅: Các bài toán cực trị liên quan điểm, mặt phẳng, mặt tròn xoay 218. + Dạng ➆: PTMP theo đoạn chắn 225. + Dạng ➇: Hình chiếu của điểm lên mặt phẳng và bài toán liên quan 226. + Dạng ➈: PTMP liên quan đến góc, khoảng cách, không dùng PTĐT 227. + Dạng ➉: Câu hỏi liên quan đến VTCP của đường thẳng 232.