Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh vào 10 chuyên năm 2019 - 2020 sở GDĐT Hưng Yên

Nhằm tuyển chọn khóa học sinh lớp 10 vào các trường THPT chuyên tại tỉnh Hưng Yên để chuẩn bị cho năm học mới, vừa qua, sở Giáo dục và Đào tạo tỉnh Hưng Yên đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020. Đề Toán tuyển sinh vào 10 THPT chuyên năm học 2019 – 2020 sở GD&ĐT Hưng Yên được sử dụng cho các thí sinh dự thi vào các lớp chuyên Toán và chuyên Tin, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). [ads] Trích dẫn đề Toán tuyển sinh vào 10 chuyên năm 2019 – 2020 sở GD&ĐT Hưng Yên : + Trong mặt phẳng toạ độ Oxy cho đường thẳng (d): y = -1/2020.x + 3/2020 và parabol y = 2x^2. Biết đường thẳng (d) cắt parabol (P) tại hai điểm B và C. Tìm tọa độ điểm A trên trục hoành để |AB – AC| lớn nhất. + Cho hình vuông ABCD tâm O, cạnh a. Lấy M là điểm bất kì trên cạnh AB (M khác A, M khác B). Qua A kẻ đường thẳng vuông góc với CM tại H, DH cắt AC tại K. 1) Chứng minh rằng MK song song với BD. 2) Gọi N là trung điểm của BC, trên tia đối của tia NO lấy điểm E sao cho ON/OE = √2/2, DE cắt OC tại F. Tính FO/FC. 3) Gọi P là giao điểm của MC và BD, Q là giao điểm của MD và AC. Tìm giá trị nhỏ nhất của diện tích tứ giác CPQD khi M thay đổi trên cạnh AB.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; kỳ thi được diễn ra vào thứ Ba ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hà Nam : + Cho biểu thức A. 1. Rút gọn biểu thức A. 2. Tìm tất cả các số nguyên của x để |2A − 1| + 1 = 2A. + Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và AE là đường kính của đường tròn (O). 1. Chứng minh BAD = CAE. 2. Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. 3. Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. 4. Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của đoạn thẳng PQ. Chứng minh rằng đường thẳng AN luôn đi qua một điểm cố định. + Cho a, b, c là ba số thực dương thỏa mãn điều kiện. Tìm giá trị lớn nhất của biểu thức.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 - 2024 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Hai ngày 29 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Hà Nam : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2, đường thẳng (d) có phương trình y = 2x + m2 – 4m + 9 (với m là tham số) và đường thẳng (delta) có phương trình y = (a − 3)x + 4 (với a là tham số). 1. Tìm a để đường thẳng (d) và đường thẳng (delta) vuông góc với nhau. 2. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B với mọi m. Gọi A(x1;y1) và B(x2;y2) (với x1 < x2), tìm tất cả các giá trị của tham số m sao cho |x1 – 2023| – |x2 + 2023| = y1 + y2 – 48. + Cho đường tròn (O). Từ điểm M bên ngoài đường tròn kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không nằm chính giữa cung AB, C khác A và B). Gọi D, E, F lần lượt là hình chiếu vuông góc của C trên các đường thẳng AB, AM, BM. 1. Chứng minh tứ giác AECD nội tiếp đường tròn. 2. Chứng minh rằng CDE = CFD. 3. Gọi I là giao điểm của AC và ED, K là giao điểm của CB và DF. Chứng minh CD vuông góc IK. 4. Đường tròn ngoại tiếp hai tam giác CIE và CKF cắt nhau tại điểm thứ hai N (N khác C). Chứng minh đường thẳng NC đi qua trung điểm của đoạn thẳng AB. + Cho a, b, c là các số không âm thỏa mãn a + b + c = 1011. Chứng minh.
Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GDĐT Giao Thuỷ - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm 2023 lần 3 phòng Giáo dục và Đào tạo huyện Giao Thuỷ, tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GD&ĐT Giao Thuỷ – Nam Định : + Cho phương trình 2 2 3 0 x mx (1) (với mlà tham số). a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị m. b) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm phân biệt 1 2 x x thỏa mãn 1 2 x x 3. + Cho đường tròn O 3cm. Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với đường tròn O (A, B là các tiếp điểm) sao cho 0 AOB 120. Tính diện tích phần giới hạn bởi hai tiếp tuyến MA, MB và cung nhỏ AB. + Cho đường tròn (O) có dây AB không là đường kính, tiếp tuyến tại A và B cắt nhau tại M. Vẽ cát tuyến MCD nằm giữa hai tia MA và MO (MC MD). Đoạn thẳng MO cắt AB tại H và cắt (O) tại điểm I. Chứng minh: a) 2 MA MC MD và 2 MC MD OH OM MO. b) Tứ giác OHCD nội tiếp và CI là tia phân giác của HCM.
Bộ đề ôn thi tuyển sinh vào lớp 10 môn Toán năm học 2023 - 2024
Tài liệu gồm 82 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, tuyển tập 15 đề ôn thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024; các đề thi hình thức 100% tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết. Trích dẫn Bộ đề ôn thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 : + Một đoàn khách du lịch gồm 40 người dự định tham quan đỉnh núi Bả đen, nóc nhà Đông Nam Bộ bằng cáp treo khứ hồi (gồm lượt lên và lượt xuống). Nhưng khi tới nơi có 5 bạn trẻ muốn khám phá bằng đường bộ khi leo lên còn lúc xuống sẽ đi cáp treo trải nghiệm nên 5 bạn mua vé lượt xuống, do đó đoàn đã chi ra 9450000 đồng để mua vé. Hỏi giá cáp treo khứ hồi và giá vé 1 lượt là bao nhiêu? Biết rằng giá vé 1 lượt rẻ hơn vé khứ hồi là 110000 đồng. + Cho Cho tam giác ABC vuông tại A ngoại tiếp đường tròn O. Gọi D E F lần lượt là các tiếp điểm của O với các cạnh AB AC và BC. Đường thẳng BO cắt đường thẳng EF tại I. Tính BIF. + Cho hình chữ nhật ABCD. Gọi M N lần lượt là trung điểm cảu các cạnh BC và CD. Gọi E là giao điểm của BN với AM và F là giao điểm của BN với DM; DM cắt AN tại K. Chứng minh điểm A nằm trên đường tròn ngoại tiếp tam giác EFK.