Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 trường THPT Ngọc Tảo Hà Nội

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 trường THPT Ngọc Tảo Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Ngọc Tảo, thành phố Hà Nội; đề thi có đáp án và thang điểm. Trích dẫn Đề cuối kỳ 1 Toán lớp 10 năm 2023 – 2024 trường THPT Ngọc Tảo – Hà Nội : + Bạn Quân làm một bài thi giữa kỳ 1 môn Toán. Đề gồm 30 câu hỏi trắc nghiệm và 4 câu hỏi tự luận. Khi làm đúng mỗi câu trắc nghiệm được 0,2 điểm, làm đúng mỗi câu tự luận được 1 điểm. Giả sử bạn Quân làm đúng x câu trắc nghiệm, y câu tự luận. Viết bất phương trình bậc nhất 2 ẩn x, y để bảo đảm bạn Quân được ít nhất 9 điểm? + Bạn Minh muốn đo khoảng cách từ vị trí A bên bờ sông đến một vị trí C ở bãi đất giữa sông. Minh bèn chọn một vị trí B thích hợp bên bờ sông và thực hiện các phép đo đạc được kết quả như sau: AB m 100 A 45 và B 70 (tham khảo hình bên). Khoảng cách AC (làm tròn kết quả đến hàng đơn vị) bằng? + Xét mặt phẳng tọa độ Oth, trong đó trục Ot biểu thị thời gian (tính bằng giây) và trục Oh biểu thị độ cao h (tính bằng mét). Một quả bóng được đá lên từ điểm A(0;3) và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 8m sau 1 giây và đạt độ cao 6m sau 2 giây. Trong khoảng thời gian nào dưới đây, độ cao của quả bóng ở giữa khoảng 5m và 7m (làm tròn đến hàng phần nghìn giây). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2018 - 2019 trường chuyên Hoàng Văn Thụ - Hòa Bình
Đề thi HK1 Toán 10 năm 2018 – 2019 trường chuyên Hoàng Văn Thụ – Hòa Bình mã đề 123 gồm 05 trang với 35 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút, đề nhằm kiểm tra chất lượng môn Toán 10 cuối học kỳ 1 của các lớp 10 Toán, 10 Lý, 10 Hóa, 10 Sinh, 10 Tin, 10 Anh 1, 10 Anh 2, 10 Nga, 10 Pháp, 10 Trung, 10 CLC TN, 10 TN Tự nhiên, 10 TN Xã hội, đề thi có đáp án phần trắc nghiệm và lời giải chi tiết phần tự luận. Trích dẫn đề thi HK1 Toán 10 năm 2018 – 2019 trường chuyên Hoàng Văn Thụ – Hòa Bình : + Cho hai hàm số y = x + 1 và y = x^2 – x – 2 có đồ thị lần lượt là d và (P). a) Lập bảng biến thiên và vẽ đồ thị của các hàm số (vẽ trên cùng một hệ tọa độ ). b) Biết rằng d cắt (P) tại hai điểm phân biệt A, B. Tính diện tích tam giác OAB (với O là gốc hệ trục tọa độ). + Tập xác định D và tính chẵn lẻ của hàm số y = x^3 + 5x là? A. D = R, hàm số chẵn. B. D = R\{0}, hàm số lẻ. C. D = R, hàm số không chẵn không lẻ. D. D = R, hàm số lẻ. [ads] + Cho hàm số y = 2x^2 + 4x – 1. Mệnh đề nào sau đây đúng? A. Hàm số đồng biến trên (-∞;1) và nghịch biến trên (1;+∞). B. Hàm số đồng biến trên (-1;+∞) và nghịch biến trên (-∞;-1). C. Hàm số nghịch biến trên (-1;+∞) và đồng biến trên (-∞;-1). D. Hàm số nghịch biến trên (-∞;1) và đồng biến trên (1;+∞).
Đề thi HK1 Toán 10 năm học 2018 - 2019 trường THPT Nguyễn Hiền - Đà Nẵng
Đề thi HK1 Toán 10 năm học 2018 – 2019 trường THPT Nguyễn Hiền – Đà Nẵng có mã đề chính thức T10-01 gồm 02 trang, đề được biên soạn theo hình thức kết hợp trắc nghiệm khách quan và tự luận theo tỉ lệ điểm 4 – 6, trong đó phần trắc nghiệm gồm 20 câu và phần tự luận gồm 2 câu, thời gian để học sinh hoàn thành bài thi là 90 phút (không tính khoảng thời gian giám thị coi thi phát đề), đề thi có đáp án và lời giải chi tiết mã đề 01, 02, 03, 04. Trích dẫn đề thi HK1 Toán 10 năm học 2018 – 2019 trường THPT Nguyễn Hiền – Đà Nẵng : + Cho X là tập hợp các số nguyên tố nhỏ hơn 9, Y là tập hợp các số nguyên dương chẵn nhỏ hơn 10, K là tập hợp các ước nguyên dương của 12. Tập hợp X ∪ (Y ∩ K) được viết dưới dạng liệt kê phần tử là? + Cho tam giác ABC và điểm M sao cho MA – MB – MC = 0. Mệnh đề nào sau đây đúng? A. ABCM là hình bình hành. B. ABMC là hình bình hành. C. BAMC là hình bình hành. D. AMBC là hình bình hành. [ads] + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(−3;6), B(1;2), C(3;4). a) Tìm tọa độ của I là trung điểm đoạn thẳng BC và tính tích vô hướng OA.(OB + OC). b) Tính (giá trị đúng) diện tích của hình tròn ngoại tiếp tam giác ABC.
Đề thi HK1 Toán 10 năm học 2018 - 2019 sở GD và ĐT Quảng Nam
Nhằm giúp các em học sinh khối 10 có thêm đề thi ôn tập chuẩn bị cho kỳ thi học kỳ 1 môn Toán 10, giới thiệu đến các em nội dung đề thi HK1 Toán 10 năm học 2018 – 2019 sở GD và ĐT Quảng Nam, đề có mã 101 được biên soạn theo hình thức kết hợp giữa trắc nghiệm khách quan và tự luận theo tỉ lệ điểm 5 – 5, trong đó phần trắc nghiệm gồm 15 câu, phần tự luận gồm 03 câu, học sinh làm bài thi trong thời gian 60 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp án và lời giải chi tiết đầy đủ 24 mã đề 101 → 124. Trích dẫn đề thi HK1 Toán 10 năm học 2018 – 2019 sở GD và ĐT Quảng Nam : + Cho tam giác ABC, gọi M, N lần lượt là trung điểm của hai cạnh AB và AC. Mệnh đề nào dưới đây đúng? A. MN và AB cùng phương. B. MN và AC cùng phương. C. MN và BC cùng phương. D. MN và BN cùng phương. [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. 15 là số nguyên tố. B. 5 là số chẵn. C. 5 là số vô tỉ. D. 15 chia hết cho 3. + Cho hình thang ABCD vuông tại A và D có AB = 6a, CD = 3a và AD = 3a. Gọi M là điểm thuộc cạnh AD sao cho MA = a. Tính T = (MB + 2MC).CB.
Đề thi HK1 Toán 10 năm 2018 - 2019 trường chuyên Lê Quý Đôn - Bình Định
Đề thi HK1 Toán 10 năm 2018 – 2019 trường chuyên Lê Quý Đôn – Bình Định mã đề 132 gồm 03 trang với 34 câu trắc nghiệm và 04 câu tự luận, học sinh có 90 phút để làm bài thi, kỳ thi được diễn ra tại trường vào ngày 26 tháng 12 năm 2018 nhằm kiểm tra lại các chủ đề kiến thức Toán 10 mà học sinh đã được học trong học kỳ 1 vừa qua của năm 2018 – 2019, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2018 – 2019 trường chuyên Lê Quý Đôn – Bình Định : + Cho phương trình √(x + 1) = x – 1 (1). Hãy chọn mệnh đề đúng trong các mệnh đề sau đây: A. Phương trình (1) có tập xác định là [1;+∞). B. Phương trình (1) tương đương với phương trình x + 1 = (x – 1)^2. C. Tập xác định của phương trình (1) chứa đoạn [-1;1]. D. Phương trình (1) vô nghiệm. [ads] + Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(1;2), B(-2;1), C(3;1). a) Chứng minh rằng A, B, C là 3 đỉnh của một tam giác. Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. b) Tìm tọa độ điểm M để tam giác MAB vuông cân tại M. + Cho tam giác ABC có AB = 3, BC = √7, CA = 5. Gọi ma, mb, mc lần lượt là độ dài các đường trung tuyến đi qua các đỉnh A, B, C của tam giác. Khi đó ma^2 + mb^2 + mc^2 bằng?