Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kì 1 Toán 9 năm 2022 - 2023 trường THCS Phan Văn Trị - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 1 môn Toán 9 năm học 2022 – 2023 trường THCS Phan Văn Trị, thành phố Hồ Chí Minh; đề thi có đáp án chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối kì 1 Toán 9 năm 2022 – 2023 trường THCS Phan Văn Trị – TP HCM : + Tổng số tiền phải trả y (đồng) khi đi Taxi của một hãng A được cho bởi công thức: y ax b. Trong đó x(km) là số km di chuyển, biết giá mở cửa là 10 000 đồng và cứ di chuyển 1km thì phải trả thêm 15000 đồng. (Lưu ý: Học sinh không cần vẽ hình). a) Tìm a b của công thức trên. b) An thanh toán số tiền là 85 000 đồng hỏi An đã di chuyển bằng Taxi bao nhiêu km? + Một máy bay cất cánh theo phương có góc nâng 250 (so với mặt đất như hình). (Lưu ý: Học sinh không cần vẽ hình). a) Hỏi muốn đạt độ cao AB = 3000m so với mặt đất thì máy bay phải bay một đoạn đường là bao nhiêu mét? (Kết quả làm tròn đến hàng đơn vị). b) Nếu máy bay bay được một đoạn đường BC = 1000 m thì lúc đó máy bay đang ở độ cao là bao nhiêu mét? (Kết quả làm tròn đến hàng đơn vị). + Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AM, AN của đường tròn (O) (M, N là các tiếp điểm). Gọi H là giao điểm của MN và OA, vẽ đường kính MC. a) Chứng minh: MN OA tại H và 4 điểm A, M, O, N cùng thuộc một đường tròn. b) AC cắt đường tròn (O) tại D (D khác C). Chứng minh: OA // NC và AM2 = AD.AC. c) Chứng minh: OHC AHD.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Gò Vấp - TP. HCM
Đề thi học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Gò Vấp – TP. HCM gồm 7 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : Cho đường tròn (O; R). Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC của (O) (B và C là các tiếp điểm); OA cắt BC tại H. a) Chứng minh OA là đường trung trực của đoạn BC và OH.OA = R^2 b) Vẽ đường kính CD của (O), AD cắt (O) tại điểm E khác D, BC cắt DE tại K, EC cắt OA tại V, tia KV cắt AC tại M. Chứng minh CE ⊥ AK và V là trung điểm của đoạn KM. c) Vẽ đường thẳng OT vuông góc với DE tại T, OT cắt đường thẳng BC tại Q. Chứng minh QD là tiếp tuyến của đường tròn (O). Giải: a) OA là đường trung trực của đoạn BC Ta có AB = AC ( tính chất 2 tiếp tuyến cắt nhau) OB = OC = R Vậy OA là đường trung trực của BC ⇒ OA ⊥ BC tại H và HB = HC Chứng minh OH.OA = R^2 AB , AC là tiếp tuyến với (O) tại B và C ⇒ AB ⊥ OB và AC ⊥ OB Xét △OAB vuông tại B , BH⊥OA , ta có OB^2 = OH.OA =R^2 (hệ thức lượng trong tam giác vuông) [ads] b) CE⊥ AKV là trung điểm của đoạn KM Ta có △CDE nội tiếp đường tròn (O) có cạnh CD là đường kính Vậy △CDE vuông tại E ⇒ CE ⊥ DE hay CE ⊥ AK Chứng minh V là trung điểm của đoạn KM Do CE ⊥ AK và AH ⊥ CK (vì OA ⊥ BC) ⇒ V là trực tâm của △ACK ⇒ KV ⊥ AC tại M và CD ⊥ AC ⇒ KM//CD KV//OD ⇒ KV/OD = AV/AO (hệ quả định lí Talet) VM//OC ⇒ VM/OC = AV/AO (hệ quả định lí Talet) ⇒ KV/OD = VM/OC ⇒ KV = VM (vì OD = OC = R) Vậy V là trung điểm của KM c) QD là tiếp tuyến của đường tròn (O) Xét △OBQ vuông tại H và △OTA vuông tại T, ta có: ∠O chung ⇒ △OBQ ∽ △OTA (g.g) ⇒ OT.OQ = OH.OA Vì OD^2 = OB^2 = OH.OA ⇒ OD^2 = OT.OQ ⇒ △ODQ ∽ △OTD (c.g.c) ⇒ ∠ODQ = ∠OTD = 90° ⇒ DQ ⊥ OD Mà OD = R ⇒ QD là tiếp tuyến với (O) tại D
Đề thi HKI Toán 9 năm học 2017 - 2018 phòng GD và ĐT Nam Từ Liêm - Hà Nội
Đề thi HKI Toán 9 năm học 2017 – 2018 phòng GD và ĐT Nam Từ Liêm – Hà Nội gồm 4 câu hỏi trắc nghiệm (chiếm 1 điểm) và 5 bài toán tự luận (chiếm 9 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : + Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm). Vẽ dây EH vuông góc với AO tại M. a) Cho biết bán kính R = 5cm, OM = 3cm. Tính độ dài dây EH. b) Chứng minh: AH là tiếp tuyến của đường tròn (O). c) Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn (O) (F là tiếp điểm). Chứng minh: 3 điểm E, O, F thẳng hàng và BF.AE = R^2. d) Trên tia HB lấy điểm I (I khác B), qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q. Chứng minh: AE = DQ. [ads] + Cho hàm số y = (m – 4)x + 4 có đồ thị là đường thẳng d (m khác 4) a) Tìm m để đồ thị hàm số đi qua A(1;6). b) Vẽ đồ thị hàm số với m vừa tìm được ở câu a. Tính góc tạo bởi đồ thị hàm số vừa vẽ với trục Ox (làm tròn đến phút). c) Tìm m để đường thẳng (d) song song với đường thẳng (d1): y = (m – m^2)x + m + 2 + Cho tam giác MNP vuông tại M, đường cao MH. Chọn hệ thức sai: A. MH^2 = HN.HB B. MP^2 = NH.HP C. MH.NP = MN.MP D. 1/MN^2 + 1/MP^2 = 1/MH^2
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Bảo - Hải Phòng
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Bảo – Hải Phòng gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng đi qua O cắt đường thẳng (d) ở M và cắt đường thẳng (d’) ở P. Từ O kẻ một tia vuông góc với MP và cắt đường thẳng (d’) ở N. Kẻ OI ⊥ MN tại I. a) Chứng minh: OM = OP và ∆NMP cân b) Chứng minh: OI = R và MN là tiếp tuyến của đường tròn (O). c) TínhAIB d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất? [ads] + Cho hàm số y = (m – 2)x + 3 (d) a) Xác định m biết (d) đi qua A(1; -1). Vẽ đồ thị hàm số với m vừa tìm được. b) Viết phương trình đường thẳng đi qua điểm B(-2; 2) và song song với đường thẳng vừa tìm được ở câu a. + Cho a, b > 0; Chứng minh rằng: 3(b^2 + 2a^2) ≥ (b + 2a)^2
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Cầu Giấy - Hà Nội
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Cầu Giấy – Hà Nội gồm 2 trang với 2 phần: + Phần 1. Trắc nghiệm khách quan: Bao gồm 8 câu hỏi, chiếm 20% số điểm. + Phần 2. Tự luận: Bao gồm 4 câu hỏi, chiếm 80% số điểm Kỳ thi diễn ra vào ngày 15/12/2017 [ads]