Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình

Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình Bản PDF Ngày 08 tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2020 – 2021. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Quảng Bình : + Cho tứ diện ABCD và hai điểm M, N lần lượt thuộc các cạnh AB, AC sao cho 2AM = BM, 2CN = AN. Mặt phẳng (P) đi qua hai điểm M, N và song song với cạnh AD, cắt các cạnh BD và CD lần lượt tại K và L. a. Gọi V là thể tích của khối tứ diện ABCD. Tính thể tích khối đa diện BCMNLK theo V. b. Giả sử tứ diện ABCD có BC = x (0 < x < √3), tất cả các cạnh còn lại đều bằng 1. Tìm x để thể tích khối tứ diện ABCD đạt giá trị lớn nhất. + Cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Gọi A, B là các giao điểm của (C) với các trục tọa độ. Tìm trên (C) các điểm M có tọa độ nguyên sao cho tam giác MAB có diện tích bằng 8 (đvdt). + Cho đa giác đều A1A2 … A2020 nội tiếp đường tròn (O), chọn ngẫu nhiên 3 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tam giác tù. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình
Nội dung Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình Bản PDF Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra ngày 21/08/2018, đề thi có lời giải chi tiết. Các dạng toán được đề cập trong đề gồm: Dãy số và giới hạn của dãy số, Bài toán hình học phẳng liên quan đến đường tròn, Bất đẳng thức, Bài toán chia hết.
Đề minh họa kỳ thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ
Nội dung Đề minh họa kỳ thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ Bản PDF Đề minh họa kỳ thi chọn HSG (học sinh giỏi) Toán lớp 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang với 40 câu hỏi trắc nghiệm (có đáp án) và 4 bài toán tự luận (có đáp số), thời gian làm bài 180 phút. Trích dẫn đề thi : + Một khối trụ được sơn hai mặt đáy và phần xung quanh, khối trụ có chiều cao bằng 8 và bán kính đáy bằng 6. Một mặt phẳng (P) cắt hai đáy theo các dây cung cách tâm tương ứng một khoảng là 3, đồng thời chia khối trụ thành hai phần có thể tích bằng nhau. Tính diện tích của phần mặt phẳng cắt không được sơn. A. 30√3 + 20π B. 12π + 6√3 C. 15√3 + 10π D. 60π [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cho AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng (ABC) là điểm H thỏa mãn vtBI = 3.vtIH và góc giữa hai mặt phẳng (SAB), (SBC) bằng 60 độ. Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a. + Đội dự tuyển thi học sinh giỏi Toán có 2 học sinh nữ, tham gia kỳ thi để chọn 4 học sinh vào đội tuyển chính thức. Biết xác suất trong đội tuyển chính thức có cả 2 học sinh nữ gấp 2 lần xác suất trong đội tuyển chính thức không có học sinh nữ nào, số học sinh của đội dự tuyển là: A. 9 B. 11 C. 5 D. 7
Đề khảo sát lớp 12 môn Toán lần 1 năm 2023 2024 trường THPT Nguyễn Trãi Thanh Hóa
Nội dung Đề khảo sát lớp 12 môn Toán lần 1 năm 2023 2024 trường THPT Nguyễn Trãi Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 1 năm học 2023 – 2024 trường THPT Nguyễn Trãi, tỉnh Thanh Hóa; đề thi có đáp án MÃ 101 MÃ 102 MÃ 103 MÃ 104 MÃ 105 MÃ 106 MÃ 107 MÃ 108. Trích dẫn Đề khảo sát Toán lớp 12 lần 1 năm 2023 – 2024 trường THPT Nguyễn Trãi – Thanh Hóa : + Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính bóng bàn. Gọi 1 S là tổng diện tích của ba quả bóng bàn 2 S là diện tích xung quanh của hình trụ. Tỉ số 1 2 S S bằng? + Một nhóm học sinh dựng lều khi đi dã ngoại bằng cách gấp đôi tấm bạt hình chữ nhật có chiều dài 12 m, chiều rộng 6 m (gấp theo đường trong hình minh hoạ) sau đó dùng hai cái gậy có chiều dài bằng nhau chống theo phương thẳng đứng vào hai mép gấp. Hãy tính xem khi dùng chiếc gậy có chiều dài bằng bao nhiêu thì không gian trong lều là lớn nhất. + Cho hình vuông ABCD có các đỉnh ABC tương ứng nằm trên các đồ thị của các hàm số log 2log 3log aaa y xy xy x. Biết rằng diện tích hình vuông bằng 36, cạnh AB song song với trục hoành. Khi đó a bằng? File WORD (dành cho quý thầy, cô):
Đề khảo sát lần 1 lớp 12 môn Toán năm 2023 2024 trường THPT Thiệu Hóa Thanh Hóa
Nội dung Đề khảo sát lần 1 lớp 12 môn Toán năm 2023 2024 trường THPT Thiệu Hóa Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng (KSCL) lần 1 môn Toán lớp 12 năm học 2023 – 2024 trường THPT Thiệu Hóa, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, có đáp án mã đề Mã 121 Mã 122 Mã 123 Mã 124 Mã 125 Mã 126. Trích dẫn Đề khảo sát lần 1 Toán lớp 12 năm 2023 – 2024 trường THPT Thiệu Hóa – Thanh Hóa : + Cho tứ diện OABC có OA OB OC và OA OB OC đôi một vuông góc. Gọi MNP lần lượt là trung điểm của AB BC và CA biết rằng thể tích của khối tứ diện OMNP bằng 9, diện tích của mặt cầu đi qua 4 điểm OABC bằng? + Một chất điểm A xuất phát từ O chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật 1 11 2 180 18 vt m s trong đó t là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 5 giây so với A và có gia tốc bằng 2 am s (a là hằng số). Sau khi B xuất phát được 10 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng? + Cho hai hình vuông ABCD và ABEF cạnh a lần lượt thuộc hai mặt phẳng vuông góc với nhau. Gọi G là điểm sao cho tam giác GEF vuông cân tại G, hai mặt phẳng (ABCD) và (GEF) song song, G và C nằm cùng phía so với mặt phẳng (ABEF). Thể tích của khối đa diện ABCDGEF bằng? File WORD (dành cho quý thầy, cô):