Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2)

Nội dung Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) Vào sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2) là đề thi được sử dụng cho các thí sinh thi vào các lớp chuyên xã hội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2): Tính bán kính đường tròn ngoại tiếp tam giác đều ABC, biết độ dài cạnh của tam giác là √3 cm. Từ điểm A nằm ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC đến đường tròn (B và C là các tiếp điểm). Đoạn thẳng AO cắt BC và đường tròn (O) lần lượt tại M và I. Chứng minh rằng ABOC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. Gọi D là điểm thuộc cung lớn BC của đường tròn (O) (với DB < DC) và K là giao điểm thứ hai của tia DM với đường tròn (O). Chứng minh rằng MD.MK = MA.MO. Gọi E và F lần lượt là hình chiếu vuông góc của A trên các đường thẳng DB và DC. Chứng minh AF song song với ME. Xét a, b, c là các số dương thỏa mãn 2a + 2b + 2c + ab + bc + ca = 24. Tìm giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2. Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) chứa những bài toán thú vị và đòi hỏi sự tư duy logic, khả năng suy luận của học sinh. Hãy tập trung và cố gắng làm thật tốt để đạt kết quả cao trong kỳ thi tuyển sinh vào lớp 10 chuyên.

Nguồn: sytu.vn

Đọc Sách

137 câu giải toán bằng cách lập PT HPT trong đề thi vào môn Toán
Nội dung 137 câu giải toán bằng cách lập PT HPT trong đề thi vào môn Toán Bản PDF - Nội dung bài viết Tổng hợp 137 câu giải toán bằng cách lập PT HPT Tổng hợp 137 câu giải toán bằng cách lập PT HPT Tài liệu này được tổng hợp bởi thầy giáo Nguyễn Chí Thành, bao gồm 84 trang với tuyển tập 137 câu giải toán bằng cách lập phương trình hoặc hệ phương trình trong các đề thi vào môn Toán. Tài liệu sẽ giúp các học sinh luyện tập và nắm vững kỹ năng giải toán theo phương pháp lập phương trình, hệ phương trình hiệu quả.
200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán
Nội dung 200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán Bản PDF - Nội dung bài viết 200 bài tập rút gọn biểu thức và bài toán Toán lớp 10 200 bài tập rút gọn biểu thức và bài toán Toán lớp 10 Bộ tài liệu này được biên soạn bởi thầy giáo Nguyễn Chí Thành, gồm tổng cộng 185 trang, bao gồm 200 bài tập rút gọn biểu thức và các bài toán liên quan trong các đề thi tuyển sinh vào lớp 10 môn Toán. Mỗi bài tập đều đi kèm đáp án và lời giải chi tiết, giúp học sinh có thể tự ôn tập và rèn luyện kỹ năng giải toán một cách hiệu quả. Trích dẫn một số nội dung bài tập trong tài liệu: Cho biểu thức A và B. Hãy tính giá trị biểu thức B khi x = 25 và chứng minh một số mệnh đề liên quan. Cho biểu thức A, rút gọn biểu thức đó và tìm giá trị của x để biểu thức A bằng 4/5. Cho hai biểu thức A và B với điều kiện x >= 0 và x khác 1. Tính giá trị của biểu thức A, rút gọn biểu thức C = A + B và so sánh giá trị của biểu thức C với 1. Bộ tài liệu này sẽ giúp học sinh hiểu rõ hơn về cách rút gọn biểu thức và giải quyết các bài toán liên quan trong đề thi Toán lớp 10. Đồng thời, các lời giải chi tiết sẽ giúp họ nắm vững kiến thức và áp dụng vào các bài toán thực tế.
Tuyển tập 400 bài toán hình học trong các đề thi vào môn Toán
Nội dung Tuyển tập 400 bài toán hình học trong các đề thi vào môn Toán Bản PDF - Nội dung bài viết Tuyển tập 400 bài toán hình học trong các đề thi vào môn Toán Tuyển tập 400 bài toán hình học trong các đề thi vào môn Toán Tài liệu này bao gồm tổng cộng 567 trang với 400 bài toán hình học từ các đề thi vào môn Toán. Những bài toán này được tuyển chọn kỹ lưỡng và đa dạng, giúp bạn ôn luyện, rèn luyện và nắm vững kiến thức trong môn học này. Dù bạn là người mới học hay bạn đã có kiến thức cơ bản, tài liệu này sẽ giúp bạn tăng cường kỹ năng giải toán hình học một cách hiệu quả.
Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán
Nội dung Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán Bản PDF - Nội dung bài viết Tuyển tập bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán Tuyển tập bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán Tài liệu này được biên soạn bởi tác giả Nguyễn Nhất Huy từ Tạp Chí và Tư Liệu Toán Học. Được chia thành 4 phần chính giúp học sinh hiểu rõ về bất đẳng thức và cách giải các bài toán liên quan trong kì thi tuyển sinh vào lớp 10 chuyên Toán. Phần 1 bắt đầu bằng việc giới thiệu các kiến thức cơ bản về bất đẳng thức, bao gồm một số kí hiệu phổ biến và các bất đẳng thức như AM – GM, Cauchy – Schwarz, cũng như điều kiện có nghiệm của phương trình. Phần 2 tập trung vào các bài toán bất đẳng thức thường xuất hiện trong các kỳ thi tuyển sinh vào lớp 10 chuyên Toán, mang tính chất lý thú và thách thức cho học sinh. Phần 3 giới thiệu các phương pháp chứng minh bất đẳng thức khác nhau, từ tam thức bậc hai đến phương pháp PQR và bất đẳng thức Schur, cũng như phân tích tổng bình phương SOS và Schus – SOS để giúp học sinh làm quen với các kỹ năng giải bài toán phức tạp hơn. Phần 4 là các bài toán luyện tập, giúp củng cố kiến thức và kỹ năng của học sinh trong việc áp dụng bất đẳng thức vào thực tế. Tuyển tập này không chỉ giúp học sinh nắm vững kiến thức căn bản về bất đẳng thức mà còn phát triển kỹ năng giải quyết bài toán một cách logic và chính xác trong kì thi tuyển sinh chuyên Toán.