Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn tập học kì 1 Toán 8 năm 2021 - 2022 trường THCS Đoàn Thị Điểm - Hà Nội

Đề cương ôn tập học kì 1 Toán 8 năm 2021 – 2022 trường THCS Đoàn Thị Điểm – Hà Nội gồm 13 trang, bao gồm mục tiêu, nội dung ôn tập và bài tập tự luyện Toán 8, giúp học sinh lớp 8 rèn luyện để chuẩn bị cho kì thi kiểm tra chất lượng cuối học kì 1 Toán 8 năm học 2021 – 2022. PHẦN 1 . MỤC TIÊU. ĐẠI SỐ: – HS được ôn tập và củng cố lại các kiến thức về nhân, chia đa thức, bảy hằng đẳng thức đáng nhớ, các phương pháp phân tích đa thức thành nhân tử. Áp dụng giải các dạng bài tập có liên quan. – HS được ôn lại các phép toán về cộng trừ, nhân, chia phân thức đại số. Áp dụng giải các dạng bài tập có liên quan. – Rèn luyện tính cẩn thận khi thực hành, luyện tập làm các tập tổng hợp về rút gọn phân thức. Áp dụng giải các dạng bài tập có liên quan. HÌNH HỌC: – HS được ôn lại: Định nghĩa, các dấu hiệu nhận biết, tính chất các tứ giác đặc biệt như: hình thang, hình bình hành, hình chữ nhật, hình thoi, hình vuông. – Ôn lại công thức tính diện tích một số tứ giác đặc biệt như: Diện tích hình chữ nhật, diện tích hình vuông, diện tich tam giác. – Rèn luyện kĩ năng vẽ hình, phân tích đề bài tìm hướng giải, kĩ năng trình bày bài cho HS. PHẦN 2 . NỘI DUNG ÔN TẬP. A. LÍ THUYẾT: 1) Học thuộc các quy tắc nhân, chia đơn thức với đơn thức, đơn thức với đa thức, phép chia hai đa thức 1 biến. 2) Nắm vững và vận dụng được 7 hằng đẳng thức – các phương pháp phân tích đa thức thành nhân tử. 3) Nêu tính chất cơ bản của phân thức, các quy tắc đổi dấu – quy tắc rút gọn phân thức, tìm mẫu thức chung, quy đồng mẫu thức. 4) Học thuộc các quy tắc: cộng, trừ, nhân, chia các phân thức đại số. 5) Nêu định nghĩa tứ giác, định lý tổng các góc trong 1 tứ giác. 6) Định nghĩa hình thang, hình thang cân, tính chất & dấu hiệu nhận biết hình thang cân. 7) Định nghĩa, tính chất đường trung bình của tam giác, hình thang. 8) Định nghĩa, tính chất & dấu hiệu nhận biết hình bình hành, hình chữ nhật, hình thoi, hình vuông. 9) Định nghĩa về 2 điểm đối xứng với nhau qua 1 đường thẳng, qua 1 điểm. Tính chất của các hình đối xứng với nhau qua 1 điểm, qua 1 đường thẳng. 10) Các tính chất về diện tích đa giác, công thức tính diện tích hình chữ nhật, hình vuông, tam giác. B. BÀI TẬP: Dạng 1. Bài tập trắc nghiệm. Dạng 2. Biến đổi đồng nhất đơn thức, đa thức. Dạng 3. Biến đổi đồng nhất phân thức đại số. Dạng 4. Bài toán hình tổng hợp. Dạng 5. Bài tập nâng cao.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích hình chữ nhật
Nội dung Chuyên đề diện tích hình chữ nhật Bản PDF - Nội dung bài viết Chuyên đề diện tích hình chữ nhật Chuyên đề diện tích hình chữ nhật Tài liệu này bao gồm 11 trang, cung cấp tóm tắt lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình chữ nhật. Nội dung tài liệu được tuyển chọn từ cơ bản đến nâng cao, giúp học sinh hiểu rõ về chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. Tóm tắt lý thuyết: 1. Khái niệm diện tích đa giác: Diện tích đa giác là số đo phần mặt phẳng giới hạn bởi một đa giác. Diện tích đa giác có các tính chất: hai tam giác bằng nhau có diện tích bằng nhau, chia đa giác thành các đa giác không có điểm chung thì diện tích bằng tổng diện tích các đa giác đó, và đơn vị diện tích của hình vuông tương ứng với đơn vị đo được chọn. 2. Công thức tính diện tích hình cơ bản: - Diện tích hình chữ nhật: bằng tích hai kích thước của nó. - Diện tích hình vuông: bằng bình phương cạnh. - Diện tích tam giác vuông: bằng nửa tích hai cạnh góc vuông. - Diện tích tam giác thường: bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. Bài tập và các dạng toán: A. Các dạng bài minh họa: - Tính diện tích đa giác. - Diện tích hình chữ nhật. - Diện tích hình vuông. - Diện tích tam giác vuông. - Tổng hợp các dạng trên. B. Phiếu bài tự luyện: - Diện tích hình chữ nhật. - Tính độ dài các cạnh của hình chữ nhật. - Diện tích hình vuông và tam giác vuông. - Bài tập tổng hợp. Tài liệu này cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh hỗ trợ trong quá trình học tập, hiểu rõ về diện tích hình chữ nhật và áp dụng vào các dạng bài tập phong phú.
Chuyên đề đa giác, đa giác đều
Nội dung Chuyên đề đa giác, đa giác đều Bản PDF - Nội dung bài viết Chuyên đề đa giác, đa giác đềuTóm tắt lý thuyếtBài tập và các dạng toánA. Các dạng bài minh họaB. Phiếu bài tự luyện Chuyên đề đa giác, đa giác đều Tài liệu này bao gồm 11 trang, cung cấp tóm tắt lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến đa giác và đa giác đều. Ngoài ra, tài liệu này cũng tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề này, với đáp án và lời giải chi tiết. Đây là một công cụ hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8, đặc biệt là chương 2 với nội dung về đa giác và diện tích đa giác. Tóm tắt lý thuyết 1. Đa giác: Đa giác A1A2...An là hình gồm n đoạn thẳng A1A2, A2A3,... AnA1, trong đó không có hai đoạn thẳng nào có một điểm chung và không nằm trên cùng một đường thẳng. 2. Đa giác lồi: Đa giác lồi luôn nằm trong một nửa mặt phẳng có bờ là một đường thẳng chứa bất kỳ cạnh nào của đa giác. 3. Các khái niệm khác: - Một đa giác có n đỉnh được gọi là n-giác. - Đường chéo của đa giác là các đoạn thẳng nối hai đỉnh không kề nhau của đa giác đó. - Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. Bài tập và các dạng toán A. Các dạng bài minh họa - Dạng 1: Nhận biết đa giác. Phương pháp giải: Sử dụng định nghĩa đa giác. - Dạng 2: Tính chất về góc của đa giác. Phương pháp giải: Sử dụng công thức tính tổng góc trong đa giác. - Dạng 3: Tính chất về đường chéo của đa giác. Phương pháp giải: Xét số đường chéo xuất phát từ một đỉnh. - Dạng 4: Đa giác đều. Phương pháp giải: Sử dụng định nghĩa và công thức tính góc của đa giác đều. B. Phiếu bài tự luyện Đề cung cấp phiếu bài tập tự luyện để học sinh có thể tự ôn tập và kiểm tra kiến thức của mình trong chuyên đề này.
Chuyên đề hình vuông
Nội dung Chuyên đề hình vuông Bản PDF - Nội dung bài viết Chuyên đề hình vuông Chuyên đề hình vuông Tài liệu này bao gồm 17 trang, tóm tắt những kiến thức quan trọng về hình vuông cần nắm vững, cung cấp các phân dạng và hướng dẫn cách giải các dạng toán liên quan. Ngoài ra, tài liệu còn tuyển chọn các bài tập từ cơ bản đến nâng cao về chuyên đề hình vuông, đi kèm đáp án và lời giải chi tiết. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8, chương 1: Tứ giác. Nó cung cấp kiến thức cần nhớ, các dạng bài tập minh họa và phiếu bài tập rèn luyện để học sinh tự rèn luyện và nắm vững kiến thức. Trong tài liệu này, người đọc sẽ được hướng dẫn cách nhận dạng hình vuông và cách giải các bài tập liên quan. Đồng thời, tài liệu cũng cung cấp phương pháp để chứng minh các quan hệ bằng nhau, song song, vuông góc, và thẳng hàng trong hình vuông. Ngoài ra, tài liệu còn giúp người đọc hiểu rõ về điều kiện để một hình trở thành hình vuông và cách giải các bài tập liên quan. Bằng cách sử dụng các dấu hiệu nhận biết hình vuông và áp dụng các tính chất của hình vuông, người đọc sẽ có thể dễ dàng tìm ra đáp án đúng cho các câu hỏi trong bài tập. Trên tất cả, tài liệu này đem đến sự hỗ trợ toàn diện cho học sinh, giúp họ nắm vững kiến thức và phát triển kỹ năng giải bài tập trong chuyên đề hình vuông một cách dễ dàng và hiệu quả.
Chuyên đề hình thoi
Nội dung Chuyên đề hình thoi Bản PDF - Nội dung bài viết Chuyên đề hình thoi Chuyên đề hình thoi Tài liệu này bao gồm 32 trang, tập trung vào việc tóm tắt lý thuyết quan trọng, phân loại các dạng toán và hướng dẫn cách giải các bài tập liên quan đến chuyên đề hình thoi. Ngoài ra, tài liệu cũng chọn lọc các bài tập từ cơ bản đến nâng cao trong chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Trong phần này, chúng ta sẽ tìm hiểu về các tính chất cơ bản của hình thoi và cách chứng minh chúng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Chứng minh tứ giác là hình thoi bằng cách sử dụng các dấu hiệu nhận biết. Ví dụ như tứ giác có bốn cạnh bằng nhau là hình thoi. Dạng 2. Vận dụng tính chất của hình thoi để chứng minh các tính chất hình học khác. Ví dụ như hình thoi là tứ giác có bốn cạnh bằng nhau và có hai đường chéo vuông góc với nhau. Dạng 3. Tìm điều kiện để tứ giác là hình thoi bằng cách áp dụng các tính chất của hình thoi. Dạng 4. Tổng hợp các dạng toán liên quan đến hình thoi. B. PHIẾU BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Phần này chứa những bài toán nâng cao giúp phát triển tư duy trong việc nhận biết và giải quyết các bài toán liên quan đến hình thoi. C. PHIẾU BÀI TỰ LUYỆN Chứa các bài tập tự luyện giúp học sinh ôn tập và củng cố kiến thức về hình thoi, từ việc chứng minh tứ giác là hình thoi đến việc áp dụng kiến thức để giải toán.