Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tích phân liên quan đến phương trình hàm ẩn

Tài liệu gồm 27 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán tích phân liên quan đến phương trình hàm ẩn, được phát triển dựa trên câu 48 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu tích phân liên quan đến phương trình hàm ẩn: A. KIẾN THỨC CẦN NHỚ 1. Các tính chất tích phân. 2. Công thức đổi biến số. B. BÀI TẬP MẪU 1. Đề bài : Cho hàm số $f(x)$ liên tục trên $R$ và thỏa mãn $xf\left( {{x^3}} \right) + f\left( {1 – {x^2}} \right)$ $ = – {x^{10}} + {x^6} – 2x$ với mọi $\forall x \in R.$ Khi đó $\int_{ – 1}^0 f (x)dx$ bằng? [ads] 2. Phân tích hướng dẫn giải 1. Dạng toán: Tính tích phân hàm ẩn. 2. Kiến thức cần nhớ: + Công thức đổi biến số trong tích phân. + Tính chất tích phân. 3. Hướng giải: + Bước 1: Nhân cả hai vế của phương trình với $x$ rồi sử dụng tích phân hai vế để tính $\int_{ – 1}^1 f (x)dx.$ + Bước 2: Nhân cả hai vế của phương trình với $x$ rồi sử dụng tích phân hai vế để tính $\int_0^1 f (x)dx.$ + Bước 3: Kết luận $\int_{ – 1}^0 f (x)dx.$ C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

Nguồn: toanmath.com

Đọc Sách

5 bài tập Tích phân dạng đặc biệt có lời giải - Trần Sĩ Tùng
Tài liệu chỉ gồm 2 trang với 5 bài toán tích phân dạng đặc biệt có lời giải chi tiết. Đây là dạng toán tích phân khá hay, được giải bằng cách các phương pháp độc đáo.
Phân dạng bài tập và lời giải chi tiết chuyên đề Tích phân - Lưu Huy Thưởng
Tài liệu gồm 120 trang tuyển chọn và giải chi tiết các toán tích phân, tài liệu do thầy Lưu Huy Thưởng biên soạn. Các nội dung trong tài liệu: PHẦN  I. TÍCH PHÂN CƠ BẢN PHẦN II. TÍCH PHẦN HÀM HỮU TỶ PHẦN III. TÍCH PHÂN HÀM SỐ VÔ TỶ PHẦN IV. TÍCH PHÂN HÀM LƯỢNG GIÁC PHẦN V. TÍCH PHÂN HÀM MŨ VÀ LOGARIT PHẦN VI. TỔNG HỢP PHẦN VII. TUYỂN TẬP MỘT SỐ ĐỀ THI THỬ PHẦN VIII. TÍCH PHÂN HÀM TRỊ TUYỆT ĐỐI. ỨNG DỤNG TÍCH PHÂN [ads]
Các phương pháp tìm Nguyên hàm - Nguyễn Đình Sỹ
Tài liệu gồm 34 trang hướng dẫn các phương pháp tìm nguyên hàm của hàm số, tài liệu do thầy Nguyễn Đình Sĩ biên soạn. Để tìm họ nguyên hàm của một hàm số y = f(x), cũng có nghĩa là ta đi tính một tích phân bất định: I = ∫f(x)dx, ta có ba phương pháp: + Phương pháp phân tích . + Phương pháp đổi biến số . + Phương pháp tích phân từng phần Do đó điều quan trọng là f(x) có dạng như thế nào để ta nghiên cứu có thể phân tích chúng sao cho có thể sử dụng bảng nguyên hàm cơ bản để tìm được nguyên hàm của chúng hoặc sử dụng hai phương pháp còn lại. Sau đây là một số gợi ý giúp các em có thể nhận biết dạng của f(x) mà có phương pháp phân tích cụ thể, từ đó tìm được nguyên hàm của chúng. [ads] PHƯƠNG PHÁP TÌM NGUYÊN HÀM BẰNG CÁCH PHÂN TÍCH I. Trường hợp f(x) là một hàm đa thức II. Trường hợp f(x) là phân thức hữu tỷ: f(x) = P(x)/Q(x) Nếu bậc của P(x) cao hơn hoặc bằng bậc của Q(x), thì bằng phép chia đa thức ta lấy P(x) chia cho Q(x) được một đa thức A(x) và một số dư R(x) mà bậc của R(x) thấp hơn bậc của Q(x). Như vậy tích phân của A(x) ta tính được ngay (như đã trình bày ở trên). Do vậy ta chỉ nghiên cứu cách tìm nguyên hàm của f(x) trong trường hợp bậc tử thấp hơn bậc của mẫu, nghĩa là f(x) có dạng: f(x) = R(x). + Trường hợp mẫu số không có nghiệm thực có nghiệm thực (Tức là mẫu số vô nghiệm) + Trường hợp mẫu số có nhiều nghiệm thực đơn + Trường hợp mẫu số có cả trường hợp không có nghiệm thực và trường hợp có nhiều nghiệm thực đơn III. Nguyễn hàm các hàm số lượng giác Để xác định nguyên hàm các hàm số lượng giác ta cần linh hoạt lựa chọn một trong các phương pháp cơ bản sau: 1. Sử dụng dạng nguyên hàm cơ bản 2. Sử dụng phương pháp biến đổi lượng giác đưa về các nguyên hàm cơ bản 3. Phương pháp đổi biến 4. Phương pháp tích phân từng phần TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN
Phương pháp giải các dạng Tích phân thường gặp
Tài liệu gồm 26 trang giới thiệu và hướng dẫn phương pháp giải các dạng tích phân thường gặp, đây là các dạng tích phân thương có trong đề thi THPT Quốc gia và đề thi tuyển sinh Cao Đẳng – Đại học. Nội dung tài liệu I. CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 1. Tính tích phân bằng định nghĩa ,tính chất và bảng nguyên hàm cơ bản 2. Phương pháp tích phân từng phần 3. Phương pháp đổi biến số + Phương pháp đổi biến dạng I + Phương pháp đổi biến dạng II 4. Phương pháp tích phân từng phần [ads] II. TÍCH PHÂN MỘT SỐ HÀM SỐ THƯỜNG GẶP 1. Tích phân hàm số phân thức 2. Tích phân các hàm lượng giác + Dạng 1: Biến đổi về tích phân cơ bản + Dạng 2: Đổi biến số để hữu tỉ hóa tích phân hàm lượng giác Dạng 3: Đổi biến số để đưa về tích phân hàm lượng giác đơn giản hơn 3. Tích phân hàm vô tỉ + Dạng 1: Biến đổi về tích phân vô tỉ cơ bản + Dạng 2: Biến đổi về tích phân hàm lượng giác + Dạng 3: Biến đổi làm mất căn 4. Tích phân chứa dấu giá trị tuyệt đối III. TÍCH PHÂN MỘT SỐ HÀM ĐẶC BIỆT