Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu phương pháp tọa độ trong mặt phẳng - Lư Sĩ Pháp

Nhằm hỗ trợ các em học sinh khối lớp 10 trong quá trình học tập chương trình Hình học 10 chương 3, giới thiệu đến các em tài liệu phương pháp tọa độ trong mặt phẳng; tài liệu gồm có 91 trang, được biên soạn bởi thầy Lư Sĩ Pháp, bao gồm lý thuyết SGK, hướng dẫn giải các dạng toán và hệ thống bài tập trắc nghiệm + tự luận giúp học sinh tự ôn luyện. Khái quát nội dung tài liệu phương pháp tọa độ trong mặt phẳng – Lư Sĩ Pháp: ÔN TẬP TỌA ĐỘ TRONG MẶT PHẲNG 1. Hệ trục toạ độ Oxy. 2. Tọa độ của vectơ và của điểm. 3. Biểu thức tọa độ của vectơ. 4. Liên hệ giữa tọa độ điểm và vectơ. BÀI 1 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. A. KIẾN THỨC CẦN NẮM I. Vectơ chỉ phương và vectơ pháp tuyến của đường thẳng. 1. Vectơ chỉ phương của đường thẳng. 2. Vectơ pháp tuyến của đường thẳng. II. Phương trình đường thẳng. 1. Phương trình tham số của đường thẳng. 2. Phương trình tổng quát của đường thẳng. 3. Các trường hợp đặc biệt. III. Vị trí tương đối giữa hai đường thẳng. IV. Góc giữa hai đường thẳng. V. Khoảng cách từ một điểm đến một đường thẳng. VI. Phương trình hai đường phân giác của các góc tạo bởi hai đường thẳng. B. BÀI TẬP + Vấn đề 1. Viết phương trình đường thẳng. + Vấn đề 2. Vị trí tương đối giữa hai đường thẳng. + Vấn đề 3. Khoảng cách từ một điểm đến một đường thẳng. BÀI 2 . PHƯƠNG TRÌNH ĐƯỜNG TRÒN. A. KIẾN THỨC CẦN NẮM 1. Một đường tròn được xác định khi biết tâm và bán kính. 2. Điều kiện để đường thẳng tiếp xúc với đường tròn. 3. Vị trí tương đối của đường thẳng và đường tròn. 4. Phương trình tiếp tuyến của đường tròn. B. BÀI TẬP + Vấn đề 1. Nhận dạng phương trình bậc hai là phương trình đường tròn. Tìm tâm và bán kính đường tròn. + Vấn đề 2. Lập phương trình đường tròn. + Vấn đề 3. Lập phương trình tiếp tuyến của đường tròn. [ads] BÀI 3 . ELÍP. A. KIẾN THỨC CẦN NẮM 1. Định nghĩa. 2. Phương trình chính tắc của elip 3. Hình dạng của elip 4. Điều kiện tiếp xúc B. BÀI TẬP + Vấn đề 1. Xác định các thành phần của một elip khi biết phương trình chính tắc của elip đó. + Vấn đề 2. Lập phương trình chính tắc của một elip khi biết các thành phần đủ để xác định elip đó. Nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. Nội dung gồm ba phần: + Phần 1. Kiến thức cần nắm. + Phần 2. Dạng bài tập có hướng dẫn giải và bài tập đề nghị. + Phần 3. Phần bài tập trắc nghiệm.

Nguồn: toanmath.com

Đọc Sách

30 tính chất hình học Oxy điển hình - Trần Văn Tài - Hứa Lâm Phong
Tài liệu Soi kính lúp hình học phẳng Oxy được biên soạn bởi thầy Trần Văn Tài và thầy Hứa Lâm Phong giới thiệu 30 tính chất hình học phẳng thường dùng trong giải toán Oxy, chứng minh tính chất và áp dụng vào trong các bài toán cụ thể. Tài liệu gồm 3 phần: 1. Giới thiệu và chứng minh 30 tính chất hình phẳng thường gặp dùng để giải nhanh bài toán Oxy Để giúp bạn đọc rèn luyện thêm cho mình những kỹ năng trong quá trình chứng minh một số tính chất hình học, tác giả bổ sung thêm vào chuyên đề mục sau. Ngoài cách chứng minh đã nêu có thể có thêm những cách chứng minh khác nữa. Điều này tùy thuộc vào khả năng tư duy và lĩnh hội cũng như sở trường của mỗi người. Tựu trung lại thì hướng chứng minh vẫn xuất phát từ 4 con đường chính: [ads] + Một là, sử dụng các tính chất hình học thuần túy của THCS + Hai là, sử dụng phương pháp véctơ thuần túy (Hình học 10) + Ba là, sử dụng phương pháp tọa độ hóa kết hợp chuẩn hóa số liệu + Bốn là, sử dụng phương pháp tổng hợp (kết hợp các cách trên) 2. Phân dạng bài toán hình phẳng Oxy + Phần I. Các bài toán về tam giác + Phần II. Các bài toán về tứ giác + Phần III. Các bài toán về đường tròn + Phần phụ trợ tham khảo 3. Trích đề thi thử mới nhất 2016
Một số tính chất hay dùng trong hình học phẳng Oxy tập 2 - Võ Quang Mẫn
Tài liệu giới thiệu một số tính chất hay dùng trong hình học phẳng Oxy giúp giải nhanh các bài toán Oxy khó, tài liệu do thầy Võ Quang Mẫn biên soạn. Tài liệu bao gồm : I – TÍNH CHẤT KINH ĐIỂN CẦN NẮM VỮNG 1. Đường tròn Apolonius 2. Hàng điểm điều hòa 3. Phép nghịch đảo, cực và đối cực 4. Tứ giác nội tiếp có hai đường chéo vuông góc 5. Tứ giác ngoại tiếp [ads] 6. Hai đường tròn trực giao 7. Trực tâm, trung điểm và tính đối trung 8. Tâm nội tiếp của tam giác đường cao 9. Tập phân tích những bài toán có sự đối xứng, yếu tố trung tâm và mối liên hệ giữa chúng II – TÍNH CHẤT MỚI CÓ THỂ PHÙ HỢP VỚI XU HƯỚNG CỦA ĐỀ THI  III – TỔNG HỢP CÁC BÀI TRÊN NHÓM OXY Xem lại tập 1:  Vận dụng các tính chất hình học phẳng vào bài toán tọa độ Oxy – Võ Quang Mẫn (Tập 1 – phiên bản 2016)
Hình học Oxy tuyển chọn phân loại theo chủ đề - Mẫn Ngọc Quang
Tài liệu hình học Oxy tuyển chọn phân loại theo chủ đề của thầy Mẫn Ngọc Quang gồm 330 trang với các bài toán Oxy được giải chi tiết và phân loại theo từng chủ đề: – Phân loại theo hình đặc trưng: + Hình vuông + Hình chữ nhật + Hình thang + Hình bình hành + Hình thoi + Tam giác: Tam giác đều, tam giác cân, tam giác vuông, tam giác thường + Đường tròn [ads] – Phân loại theo tính chất hình học: + Vuông góc + Bằng nhau + Thẳng hàng + Song song + Phân giác + Tỉ lệ độ dài
Tuyển chọn bài toán Oxy bám sát kì thi THPT QG 2016 - Lê Anh Tuấn
Tài liệu gồm 22 trang tuyển chọn các bài toán Oxy hay và khó bám sát nội dung đề thi THPT Quốc gia 2016, tài liệu được biên soạn bởi thầy Lê Anh Tuấn. A. Phương pháp chung để giải quyết bài toán hình học giải tích phẳng gồm các bước sau: 1. Vẽ hình, xác định các yếu tố đã biết lên hình. 2. Khám phá các tính chất khác của hình (nếu cần). Chú ý tìm các đường vuông góc, song song, đồng quy; các đoạn bằng nhau, góc bằng nhau; các góc đặc biệt; quan hệ thuộc giữa điểm và đường thẳng, đường tròn …. 3. Xác định các điểm, đường thẳng (theo các kĩ thuật đã học) để thực hiện yêu cầu bài toán. B. Một số hướng khai thác giả thiết [ads] Dưới đây là một số hướng khai thác các giả thiết của đề bài. Dĩ nhiên, tùy vào từng bài cụ thể, ta còn có những hướng sử dụng khác. 1. Phương trình đường thẳng d 2. Phương trình đường tròn (C) 3. Điểm G là trọng tâm tam giác ABC 4. Điểm H là trực tâm của tam giác ABC 5. Điểm I là tâm đường tròn ngoại tiếp tam giác ABC 6. J là tâm đường tròn nội tiếp tam giác ABC 7. Đường thẳng d là đường phân giác trong góc BAC 8. Tứ giác nội tiếp