Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán

Nội dung Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán Bản PDF Nội dung tài liệu phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán đến từ trường THPT An Phước, tỉnh Ninh Thuận, gồm 87 trang, được biên soạn bởi tập thể quý thầy, cô giáo. Tài liệu này hướng dẫn chi tiết phân tích các câu hỏi trong đề minh họa của Bộ Giáo dục 2022.

Trong phần 1 của tài liệu, có phần MA TRẬN ĐỀ MINH HỌA BỘ GIÁO DỤC 2022, trong đó có khung ma trận và bảng mô tả chi tiết nội dung câu hỏi. Các câu hỏi bao gồm các nội dung như xác định số phức cơ bản, phương trình mặt cầu, bài toán sử dụng định nghĩa và tính chất, tính thể tích khối đa diện, tập xác định của hàm số, phương trình cơ bản, đạo hàm, tích phân cơ bản, biểu diễn hình học của số phức, xác định các đường tiệm cận của hàm số, bất phương trình cơ bản, và nhiều nội dung khác.

Phần 2 của tài liệu là PHÂN TÍCH ĐỀ MINH HỌA BỘ GIÁO DỤC 2022, trong đó tập trung vào phân tích chi tiết từng câu hỏi trong đề minh họa. Cung cấp cách giải và lý giải rõ ràng, dễ hiểu giúp học sinh hiểu rõ hơn và áp dụng vào bài tập.

Phần 3 của tài liệu là BÀI TẬP CHO HỌC SINH RÈN LUYỆN, cung cấp các bài tập để học sinh ôn tập và rèn luyện kỹ năng giải bài tập, áp dụng kiến thức đã học.

Tài liệu này là nguồn tư liệu hữu ích để học sinh chuẩn bị cho kỳ thi tốt nghiệp THPT, giúp họ nắm vững kiến thức, rèn luyện kỹ năng giải bài tập một cách hiệu quả. Đồng thời, tài liệu cũng là sản phẩm nỗ lực và sự chuyên nghiệp của đội ngũ giáo viên trường THPT An Phước, tỉnh Ninh Thuận.

Nguồn: sytu.vn

Đọc Sách

Tài liệu ôn tập lý thuyết thi tốt nghiệp Trung học Phổ thông môn Toán
Tài liệu gồm 21 trang, được biên soạn bởi thầy giáo Huỳnh Phú Sĩ, hướng dẫn học sinh lớp 12 ôn tập lý thuyết để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. MỤC LỤC : Chủ đề 1 . Khảo sát sự biến thiên và đồ thị của hàm số 2. 1. Sự biến thiên của hàm số 2. 2. Cực trị của hàm số 2. 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3. 4. Đường tiệm cận 3. 5. Khảo sát đồ thị hàm số 3. Chủ đề 2 . Lũy thừa – Mũ – Logarit 6. 1. Lũy thừa 6. 2. Hàm số lũy thừa 7. 3. Logarit 7. 4. Hàm số mũ và hàm số logarit 8. 5. Phương trình mũ và phương trình logarit 9. 6. Bất phương trình mũ và bất phương trình logarit 9. Chủ đề 3 . Nguyên hàm – Tích phân và ứng dụng 10. 1. Nguyên hàm 10. 2. Tích phân 10. 3. Ứng dụng của tích phân trong hình học 11. Chủ đề 4 . Số phức 12. 1. Số phức 12. 2. Phép cộng, trừ, nhân, chia số phức 12. Chủ đề 5 . Khối đa diện 13. 1. Khái niệm về hình đa diện và khối đa diện 13. 2. Khối đa diện đều 13. 3. Thể tích khối đa diện 13. Chủ đề 6 . Khối tròn xoay 14. 1. Hình nón và hình trụ 14. 2. Hình cầu 14. Chủ đề 7 . Phương pháp tọa độ trong không gian 16. 1. Hệ tọa độ Oxyz 16. 2. Phương trình mặt cầu 17. 3. Phương trình mặt phẳng 17. 4. Phương trình đường thẳng 18. Chủ đề 8 . Dãy số – Quy tắc đếm – Xác suất – Góc – Khoảng cách 19. 1. Dãy số 19. 2. Quy tắc đếm 19. 3. Xác suất 20. 4. Góc và Khoảng cách trong không gian.
Làm ngược và loại trừ trong giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn sử dụng phương pháp làm ngược và loại trừ trong giải toán trắc nghiệm. 1. “Làm ngược”: Từ đáp án, kiểm tra các điều kiện của bài toán để xác thực tính đúng – sai: Ta cần chú ý rằng, các đáp án cũng chính là giả thiết của bài toán, gợi ý giúp ta giải quyết bài toán trắc nghiệm. 2. “Loại trừ”: Từ giả thiết, bóc tách ra các điều kiện độc lập, kiểm tra các đáp án vi phạm điều kiện để loại trừ. Đối với câu hỏi có chọn lựa phương án đúng, đáp án nào vi phạm điều kiện bài toán, sẽ bị loại trừ. Nếu câu hỏi trắc nghiệm có bốn đáp án, mà trong đó có một đáp án đúng, chúng ta xác định được ba trong bốn đáp án đã cho là sai thì đáp án đúng là đáp án còn lại. Xem thêm : + Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm – Trần Tuấn Anh + Phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh