Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Đống Đa Hà Nội

Nội dung Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Đống Đa Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra đánh giá cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Đống Đa, thành phố Hà Nội; đề thi mã đề 450 gồm 04 trang với 25 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút. Trích dẫn Đề học kì 1 Toán lớp 10 năm 2022 – 2023 trường THPT Đống Đa – Hà Nội : + Xác định parabol y = 2×2 + bx + c biết rằng parabol đó có hoành độ đỉnh bằng –2 và đi qua điểm N(1;−2). + Tìm tất cả các giá trị của a sao cho giá trị nhỏ nhất của hàm số y = 4×2 – 4ax + a2 – 2a + 2 trên đoạn [0;2] bằng 5. + Để tiết kiệm năng lượng, nhằm bảo vệ môi trường, một Sở Điện lực đưa ra phương án tính tiền điện của mỗi hộ gia đình trong một tháng như sau: Với 100 số điện (Kwh) đầu tiên hộ sử dụng phải trả là 1500 đồng/số điện. Từ số điện thứ 101 đến số điện thứ 200 hộ sử dụng phải trả là 2000 đồng/số điện. Từ số điện thứ 201 trở lên hộ sử dụng phải trả là 3000 đồng/số điện. a) Lập công thức tổng quát cách tính số tiền một hộ gia đình sử dụng x số điện mỗi tháng (x >= 0) b) Áp dụng công thức trên tính số tiền hộ gia đình sử dụng điện phải trả nếu mỗi tháng sử dụng 100 số điện, 150 số điện, 250 số điện. + Cho tam giác ABC có trọng tâm G. a) Chứng minh rằng: AD + BC = AC + BD với mọi điểm D bất kì. b) Gọi P là trung điểm của AG và Q là điểm thỏa mãn AQ = kAC. Xác định k để B, P và Q thẳng hàng.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường chuyên Nguyễn Huệ - Hà Nội
Thứ Bảy ngày 14 tháng 12 năm 2019, trường THPT chuyên Nguyễn Huệ, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK1 Toán 10 năm 2019 – 2020 trường chuyên Nguyễn Huệ – Hà Nội mã đề 103 gồm có 05 trang, đề được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường chuyên Nguyễn Huệ – Hà Nội : + Trong một lớp học có 100 học sinh, 35 học sinh chơi bóng đá và 45 học sinh chơi bóng chuyền, 10 học sinh chơi cả hai môn thể thao. Hỏi có bao nhiêu học sinh không chơi môn thể thao nào? (Biết rằng chỉ có hai môn thể thao là bóng đá và bóng chuyền). + Cho tam giác ABC. Điểm M thỏa mãn AB + AC = 2AM. Chọn khẳng định đúng? A. M là trung điểm của BC. B. M trùng với B hoặc C. C. M trùng với A. D. M là trọng tâm tam giác ABC. + Cho tam giác ABC, trọng tâm G, gọi I là trung điểm BC, M là điểm thoả mãn: 2|MA + MB + MC| = 3|MB + MC|. Khi đó tập hợp điểm M là: A. Đường trung trực của BC. B. Đường trung trực của IG. C. Đường tròn tâm I, bán kính BC. D. Đường tròn tâm G, bán kính BC.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Dương Văn Dương - TP HCM
Đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Dương Văn Dương, thành phố Hồ Chí Minh gồm 01 trang với 07 câu tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Dương Văn Dương – TP HCM : + Ông A có một miếng đất hình vuông. Ông khai hoang mở rộng thêm một bề 8m, một bề 12m thành một miếng đất hình chữ nhật (như hình vẽ). Sau khi mở rộng diện tích của miếng đất tăng thêm 3136 m2. Tính độ dài các cạnh của miếng đất sau khi ông A khai hoang mở rộng? + Trong mặt phẳng Oxy, cho ba điểm 𝐴(−3;3), 𝐵(4;4) và C(1;3). a) Tìm tọa độ điểm G là trọng tâm tam giác ABC. b) Tìm tọa độ điểm 𝑁 thỏa mãn AN = NB – 3BC. c) Tìm tọa độ điểm M thuộc trục tung để tam giác ABM vuông tại M. + Xác định parabol (P): 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, biết (P) có đỉnh 𝐼(2;1) và cắt trục hoành tại điểm có hoành độ 𝑥 = 3.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT An Lạc - TP HCM
Đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT An Lạc – TP HCM gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT An Lạc – TP HCM : + Hai công nhân được giao việc sơn một bức tường. Sau khi người thứ nhất làm được 7 giờ và người thứ hai làm được 4 giờ nữa thì họ sơn được 5/9 bức tường. Sau đó họ cùng làm việc với nhau trong 4 giờ thì chỉ còn lại 1/18 bức tường chưa sơn. Hỏi nếu mỗi người làm riêng thì sau bao nhiêu giờ mỗi người mới sơn xong bức tường? + Trong mặt phẳng Oxy, cho tam giác ABC có A(6;-3), B(-10;9) và C(7;-5). a) Tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm tọa độ D để BGCD là hình bình hành. c) Cho điểm K(x + 2;-3x + 5), tìm x để ba điểm A, B, K thẳng hàng. + Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số y = -x2 + 4x – 6. Tìm tọa độ giao điểm của (P) và đường thẳng (d): y = -4x + 9 bằng phép tính.
Đề thi HKI Toán 10 năm 2019 - 2020 trường Nguyễn Bỉnh Khiêm - TP HCM
Đề thi HKI Toán 10 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HKI Toán 10 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM : + Cho parabol (P): y = ax2 + bx + c (a khác 0). Xác định (P) (tìm a, b, c), biết rằng: (P) có đỉnh I(2;2) và đi qua điểm A(0;-2). + Trong hệ Oxy cho A(4;2), B(-3;6), C(2;1). a) Tính AB, BC, AC? b) Gọi M, N, P lần lượt là trung điểm của AB, BC, AC. Tìm tọa độ M, N, P? c) Chứng minh A, B, C tạo thành tam giác. Tìm tọa độ trọng tâm G của tam giác ABC? d) Tính AB.AC, từ đó tính góc A? + Cho tam giác ABC vuông tại A. AB = 4a, AC = 3a, AH là đường cao. a) Tính BA.BC. b) Tính AH.AC.