Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán lần 3 năm 2022 2023 trường THCS Trường Sơn Thanh Hóa

Nội dung Đề khảo sát HSG lớp 7 môn Toán lần 3 năm 2022 2023 trường THCS Trường Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 7 môn Toán lần 3 năm 2022-2023 trường THCS Trường Sơn Thanh Hóa Đề khảo sát HSG lớp 7 môn Toán lần 3 năm 2022-2023 trường THCS Trường Sơn Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 7! Sau đây là đề khảo sát chất lượng học sinh giỏi môn Toán lớp 7 lần 3 năm học 2022-2023 của trường THCS Trường Sơn, huyện Nông Cống, tỉnh Thanh Hóa. Đề thi này bao gồm cả đáp án và hướng dẫn chấm điểm để các em có thể tự kiểm tra và nâng cao kiến thức của mình. Dưới đây là một số câu hỏi trong đề khảo sát: 1. Tìm số tự nhiên có ba chữ số, biết rằng số đó là bội của 18 và các chữ số của nó tỉ lệ theo 1:2:3. Tìm tất cả các số tự nhiên a, b sao cho: 2016a1b = 2015b2015. 2. Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ∆ADC = ∆ABE. b) Chứng minh rằng ∆AMN đều. c) Chứng minh rằng IA là phân giác của góc DIE. 3. Cho 2016 số nguyên dương a1, a2, a3, … , a2016 thỏa mãn 1232016 = 111...300aaa. Chứng minh trong 2016 số đã cho tồn tại ít nhất hai số bằng nhau. File WORD chứa đầy đủ đề thi và đáp án dành cho quý thầy cô có thể tải về để sử dụng.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT thành phố Quảng Ngãi
Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT thành phố Quảng Ngãi Bản PDF - Nội dung bài viết Đề thi Học sinh giỏi Toán lớp 7 năm 2020 - 2021 Đề thi Học sinh giỏi Toán lớp 7 năm 2020 - 2021 Chào đón quý thầy cô và các em học sinh lớp 7, Sytu xin giới thiệu đến đề thi chọn Học sinh giỏi môn Toán lớp 7 trong năm học 2020 - 2021 do Phòng Giáo dục và Đào tạo thành phố Quảng Ngãi, tỉnh Quảng Ngãi thực hiện. Đề thi này là cơ hội cho các em học sinh thể hiện năng lực và kiến thức Toán của mình thông qua các bài tập đa dạng và thú vị. Hy vọng các em sẽ tự tin và thành công khi tham gia vào bài thi này.
Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Cao Lộc Lạng Sơn
Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Cao Lộc Lạng Sơn Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 7 năm 2020 - 2021 phòng GD&ĐT Cao Lộc - Lạng Sơn Đề học sinh giỏi Toán lớp 7 năm 2020 - 2021 phòng GD&ĐT Cao Lộc - Lạng Sơn Đề học sinh giỏi Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Cao Lộc - Lạng Sơn là một bài kiểm tra được thiết kế để đánh giá năng lực Toán học của các học sinh. Đề bao gồm một trang giấy với 05 bài toán dạng tự luận, yêu cầu học sinh phải suy nghĩ sáng tạo và tự giải quyết vấn đề. Thời gian làm bài cho học sinh là 150 phút, đủ để họ có thời gian suy nghĩ và làm bài một cách cẩn thận. Đề này không chỉ đánh giá kiến thức cơ bản mà còn đánh giá khả năng suy luận, giải quyết vấn đề và logic của học sinh. Việc hoàn thành tốt bài kiểm tra này không chỉ giúp họ củng cố kiến thức mà còn phát triển khả năng tư duy logic và sáng tạo của mình. Đề học sinh giỏi Toán lớp 7 năm 2020 - 2021 phòng GD&ĐT Cao Lộc - Lạng Sơn là cơ hội để các học sinh thể hiện tài năng của mình và phấn đấu để đạt kết quả tốt nhất. Chúc các em thành công trong bài kiểm tra này!
Đề chọn học sinh năng khiếu lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Sơn Dương Tuyên Quang
Nội dung Đề chọn học sinh năng khiếu lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Sơn Dương Tuyên Quang Bản PDF - Nội dung bài viết Đề chọn học sinh năng khiếu Toán lớp 7 năm 2020 - 2021 phòng GD&ĐT Sơn Dương - Tuyên Quang Đề chọn học sinh năng khiếu Toán lớp 7 năm 2020 - 2021 phòng GD&ĐT Sơn Dương - Tuyên Quang Đề chọn học sinh năng khiếu Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Sơn Dương - Tuyên Quang là một bài kiểm tra gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài cho học sinh là 150 phút. Đề thi này được thiết kế nhằm đánh giá khả năng tư duy logic, suy luận và sự hiểu biết sâu rộng về môn Toán của học sinh lớp 7. Bài thi được sắp xếp theo cấu trúc logic và thử thách, giúp học sinh phát huy khả năng giải quyết vấn đề, phân tích và suy luận một cách logic. Đề thi cũng có thể khám phá và khuyến khích sự sáng tạo của học sinh thông qua các bài toán đa dạng và phong phú. Thời gian làm bài 150 phút là đủ để học sinh đề xuất giải pháp cho từng bài toán một cách tỉ mỉ và chính xác. Đây là cơ hội để các em thể hiện kiến thức, kỹ năng và sự tự tin trong môn Toán. Đề thi chọn học sinh năng khiếu Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Sơn Dương - Tuyên Quang là một cơ hội để các em thể hiện năng khiếu và đam mê với môn học này, đồng thời giúp phát triển tư duy logic và kỹ năng toán học của học sinh.
Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Yên Định Thanh Hóa
Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Yên Định Thanh Hóa Bản PDF - Nội dung bài viết Đề Học Sinh Giỏi Toán Lớp 7 Năm 2020-2021 Phòng GD&ĐT Yên Định Thanh Hóa Đề Học Sinh Giỏi Toán Lớp 7 Năm 2020-2021 Phòng GD&ĐT Yên Định Thanh Hóa Đề học sinh giỏi Toán lớp 7 năm 2020-2021 do Phòng Giáo dục và Đào tạo Yên Định tổ chức bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút, kỳ thi diễn ra vào ngày 02 tháng 02 năm 2021. Đề thi cung cấp lời giải chi tiết và hướng dẫn chấm điểm. Trích từ đề học sinh giỏi Toán lớp 7 năm 2020-2021 Phòng GD&ĐT Yên Định-Thanh Hóa: 1. Tìm một số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau, 2 chữ số cuối giống nhau. 2. Tìm các số nguyên dương n và các số nguyên tố p sao cho n n = p. 3. Cho ABC có góc A nhỏ hơn 90 độ. Trên nửa mặt phẳng bờ AB không chứa điểm C, vẽ đoạn thẳng AM sao cho AM vuông góc với AB và AM = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ đoạn thẳng AN sao cho AN vuông góc với AC và AN = AC. a) Chứng minh rằng: ∠AMC = ∠ABN. b) Chứng minh: BN || CM. c) Kẻ AH || BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. Đề thi được thiết kế để thử thách học sinh lớp 7 với các bài toán đa dạng và logic. Thách thức không chỉ đến từ việc tìm ra đáp án đúng mà còn từ việc phải chứng minh các bước giải thật chặt chẽ. Đây là cơ hội để các em thể hiện kiến thức và khả năng tư duy logic của mình trong môn Toán.