Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Bình

Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình (mã đề 105); hướng đến kỳ thi tốt nghiệp THPT năm 2023 môn Toán. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Khẳng định nào sau đây sai? A. Đồ thị hàm số y = (1/2)x nhận trục hoành làm đường tiệm cận ngang. B. Hàm số y = 2^x và y = log2x đồng biến trên mỗi khoảng mà hàm số xác định. C. Hàm số y = log1/2x có tập xác định là (0;+vc). D. Đồ thị hàm số y = log2-1x nằm phía trên trục hoành. + Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(0;1;0). Gọi (P) là mặt phẳng đi qua các điểm A, B đồng thời cắt tia Oz tại điểm C sao cho tứ diện OABC có thể tích bằng 1/6. Phương trình mặt phẳng (P) là? + Trong tập hợp các số phức, cho phương trình z3 + (1 – 2m)z2 + 2mz + 4m = 0 với tham số m thuộc R. Gọi S là tập hợp các giá trị của m để phương trình có 3 nghiệm phân biệt và 3 điểm biểu diễn 3 nghiệm đó tạo thành tam giác đều. Tổng tất cả các phần tử của tập S bằng?

Nguồn: sytu.vn

Đọc Sách

Đề KSCL THPT Quốc gia 2019 môn Toán 12 lần 2 trường Lê Xoay - Vĩnh Phúc
chia sẻ đến thầy, cô và các em học sinh khối 12 nội dung đề KSCL THPT Quốc gia 2019 môn Toán 12 lần 2 trường Lê Xoay – Vĩnh Phúc, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đây là thời điểm thích hợp để tổ chức các kỳ thi thử THPT Quốc gia môn Toán nhằm giúp các em có sự chuẩn bị kỹ lưỡng về mặt kiến thức Toán lẫn sự tự tin để bước vào kỳ thi chính thức với một tâm thế thoải mái nhất. Đề KSCL THPT Quốc gia 2019 môn Toán 12 lần 2 trường Lê Xoay – Vĩnh Phúc có mã đề 132, đề được biên soạn bám sát cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 của Bộ Giáo dục và Đào tạo, đề gồm 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh có 90 phút để làm bài thi, đề thi có đáp án. [ads] Trích dẫn đề KSCL THPT Quốc gia 2019 môn Toán 12 lần 2 trường Lê Xoay – Vĩnh Phúc : + Cho chuyển động thẳng xác định bởi phương trình s(t) = t^3 – 3t^2 – 2/5t + 3 (thời gian tính bằng giây, quãng đường tính bằng m). Khẳng định nào sau đây đúng? A. Gia tốc của chuyển động bằng 0 khi t = 0. B. Gia tốc của chuyển động tại thời điểm t = 4 là a = 18 m/s2. C. Vận tốc của chuyển động tại thời điểm t = 2 là v = 18 m/s. D. Vận tốc của chuyển động bằng 0 khi t = 0. + Một hội nghị gồm 6 đại biểu nước Anh, 7 đại biểu nước Pháp và 7 đại biểu nước Nga, trong đó mỗi nước có 2 đại biểu là nam. Chọn ngẫu nhiên ra 4 đại biểu. Xác suất chọn được 4 đại biểu để trong đó mỗi nước đều có ít nhất một đại biểu và có cả đại biểu nam và đại biểu nữ bằng? + Để đủ tiền mua nhà, anh Hoàng vay ngân hàng 500 triệu đồng theo phương thức trả góp với lãi suất 0,85%/tháng. Nếu sau mỗi tháng, kể từ thời điểm vay, anh Hoàng trả nợ cho ngân hàng số tiền cố định là 10 triệu đồng bao gồm cả tiền lãi vay và tiền gốc. Biết rằng phương thức trả lãi và gốc không thay đổi trong suốt quá trình anh Hoàng trả nợ. Hỏi sau bao nhiêu tháng thì anh trả hết nợ ngân hàng? (Tháng cuối có thể trả dưới 10 triệu đồng).
Đề KSCL Toán 12 THPT năm học 2018 - 2019 sở GDĐT Phú Thọ
Thứ Sáu ngày 01 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Phú Thọ đã tiến hành tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 THPT năm học 2018 – 2019 môn Toán, đây là kỳ thi được tổ chức thường xuyên nhằm giúp học sinh có bước chuẩn bị trước khi bước vào kỳ thi THPT Quốc gia môn Toán năm 2019. Đề KSCL Toán 12 THPT năm học 2018 – 2019 sở GD&ĐT Phú Thọ có mã đề 148, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh có 90 phút để làm bài thi này. Thông qua kỳ thi, giáo viên bộ môn sẽ nắm rõ được chất lượng học tập môn Toán của học sinh khối 12, học sinh sẽ được làm quen với không khí kỳ thi, nắm được các dạng bài cần ôn tập. [ads] Trích dẫn đề KSCL Toán 12 THPT năm học 2018 – 2019 sở GD&ĐT Phú Thọ : + Một lớp có 20 học sinh nữ và 25 học sinh nam. Bạn lớp trưởng nữ chọn ngẫu nhiên 4 học sinh khác tham gia một hoạt động của Đoàn trường. Xác suất để 4 học sinh được chọn có cả nam và nữ bằng (làm tròn đến chữ số thập phân thứ 4). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2, SA = 2 và SA vuông góc với mặt mặt phẳng đáy. Gọi M, N lần lượt là hai điểm thay đổi trên hai cạnh AB, AD (AN < AM) sao cho mặt phẳng (SMC) vuông góc với mặt phẳng (SNC). Khi thể tích khối chóp S.AMCN đạt giá trị lớn nhất, giá trị 1/AN^2 + 16/AM^2 bằng? + Ông A muốn mua một chiếc ô tô trị giá 1 tỉ đồng, nhưng vì chưa đủ tiền nên ông chọn mua bằng thức trả góp hàng tháng (số tiền trả góp mỗi tháng như nhau) với lãi suất 12% / năm và trả trước 500 triệu đồng. Hỏi mỗi tháng ông phải trả số tiền gần nhất với số tiền nào dưới đây để sau đúng 2 năm, kể từ ngày mua xe, ông trả hết nợ, biết kì trả nợ đầu tiên sau ngày mua ô tô đúng một tháng và chỉ tính lãi hàng trên số dư nợ thực tế của tháng đó?
Đề KSCL Toán THPT Quốc gia 2019 lần 1 trường Phan Châu Trinh - Đà Nẵng
Đề KSCL Toán THPT Quốc gia 2019 lần 1 trường Phan Châu Trinh – Đà Nẵng mã đề 456 được biên soạn bám sát đề tham khảo THPT Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo ban hành, đề gồm 06 trang với 50 câu hỏi và bài tập hình thức trắc nghiệm khách quan, học sinh làm bài trong 90 phút, kỳ thi được diễn ra vào ngày 24 tháng 02 năm 2019. Trích dẫn đề KSCL Toán THPT Quốc gia 2019 lần 1 trường Phan Châu Trinh – Đà Nẵng : + Kết quả thống kê cho biết ở thời điểm năm 2003 dân số Việt Nam là 80902400 người và tỉ lệ tăng dân số là 1,47% năm. Nếu mức tăng dân số ổn định như vậy thì dân số Việt Nam vào năm 2019 là bao nhiêu? (kết quả làm tròn đến hàng trăm). [ads] + Cho khối đa diện. Mệnh đề sai? A. Số cạnh của lăng trụ không thể là 2019. B. Số cạnh của lăng trụ có thể là 2018. C. Số cạnh của một khối chóp bất kì có thể là một số lẻ lớn hơn hoặc bằng 5. D. Số cạnh của một khối chóp bất kì luôn là một số chẵn lớn hơn hoặc bằng 6. + Một người gửi 500 triệu đồng vào ngân hàng với lãi suất 7,5%/ năm, theo thể thức nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm, người đó nhận được số tiền nhiều hơn một tỉ đồng bao gồm cả gốc và lãi? Biết rằng trong suốt thời gian gửi, lãi suất ngân hàng không đổi và người đó không rút tiền ra.
Đề KSCL Toán 12 ôn thi THPTQG năm 2018 - 2019 trường chuyên Vĩnh Phúc lần 3
Vừa qua, trường THPT chuyên Vĩnh Phúc đã tiếp tục tổ chức kỳ thi khảo sát chất lượng các môn thi THPT Quốc gia năm học 2018 – 2019, đây đã là lần thứ 3 trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi này, mục đích nhằm giúp học sinh được rèn luyện, thử sức thường xuyên để củng cố và nâng cao kiến thức trước khi bước vào kỳ thi chính thức THPT Quốc gia năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức. xin giới thiệu đến thầy, cô và các em học sinh khối 12 nội dung đề KSCL Toán 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3, đề bám sát cấu trúc đề minh họa môn Toán năm 2019 của Bộ Giáo dục và Đào tạo với 50 câu trắc nghiệm khách quan, thời gian làm bài thi môn Toán là 90 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề KSCL Toán 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3 : + Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Tinh tanα khi thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. + Trong không gian Oxyz, lấy điểm C trên tia Oz sao cho OC = 1. Trên hai tia Ox, Oy lần lượt lấy hai điểm A, B thay đổi sao cho OA + OB = OC. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện O.ABC? + Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) trên R như hình vẽ. Mệnh đề nào sau đây là đúng? A. Hàm số y = f(x) có 1 điểm cực tiểu và không có cực đại. B. Hàm số y = f(x) có 1 điểm cực đại và 2 điểm cực tiểu. C. Hàm số y = f(x) có 1 điểm cực đại và không có cực tiểu. D. Hàm số y = f(x) có 1 điểm cực đại và 1 điểm cực tiểu.