Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bồi dưỡng và phát triển tư duy đột phá Toán 8 (Tập 2 Hình học)

THCS. giới thiệu đến bạn đọc tài liệu “Bồi dưỡng và phát triển tư duy đột phá Toán 8 (Tập 2: Hình học)”, tài liệu gồm 199 trang được biên soạn với mục đích gửi tới quý thầy cô giáo, quý vị phụ huynh và các em học sinh một tài liệu tham khảo hữu ích trong quá trình dạy và học môn Toán lớp 8 – phần Hình học 8, theo định hướng đổi mới của Bộ Giáo dục và Đào tạo. Cấu trúc tài liệu gồm hai phần: + Kiến thức căn bản cần nắm: Nhắc lại những kiến thức cơ bản Hình học 8 cần nắm, những công thức quan trọng trong bài học, có ví dụ minh họa. + Bài tập sách giáo khoa & bài tập tham khảo: Lời giải chi tiết cho các bài tập, bài tập được tuyển chọn từ nhiều nguồn tài liệu Toán 8 – phần Hình học, được chia bài tập thành các dạng có phương pháp làm bài, các ví dụ minh họa có lời giải chi tiết, có nhiều cách giải khác nhau cho một bài toán. Mục lục tài liệu bồi dưỡng và phát triển tư duy đột phá Toán 8 (Tập 2: Hình học): CHƯƠNG 1 . TỨ GIÁC. Bài 1 . Tứ giác. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 2 . Hình thang. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 3 . Hình thang cân. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 4 . Đường trung bình. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 6 . Trục đối xứng. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 7 . Hình bình hành. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 8 . Đối xứng tâm. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 9 & 10 . Hình chữ nhật – Đường thẳng song song với đường thẳng cho trước. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 11 . Hình thoi. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 12 . Hình vuông. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. CHƯƠNG 2 . ĐA GIÁC & DIỆN TÍCH ĐA GIÁC. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. [ads] CHƯƠNG 3 . ĐỊNH LÍ TALET TRONG TAM GIÁC – TAM GIÁC ĐỒNG DẠNG. Bài 1 & 2 . Định lí Talet trong tam giác – Định lí Talet đảo – Hệ quả định lí Talet. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 3 . Tính chất của đường phân giác trong tam giác. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 4 & 5 & 6 . Tam giác đồng dạng. Các trường hợp đồng dạng của hai tam giác. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 7 . Các trường hợp đồng dạng của hai tam giác vuông. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. CHƯƠNG 4 . HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU. Bài 1 . Hình hộp chữ nhật. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 2 . Hình lăng trụ đứng. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập. Bài 3 . Hình chóp đều và hình chóp cụt đều. A. Chuẩn kiến thức. B. Luyện kĩ năng giải bài tập.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trường hợp đồng dạng thứ hai
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ hai, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: + Bước 1: Xét hai tam giác, chọn ra hai góc bằng nhau và chứng minh (nếu cần). + Bước 2: Lập tỉ số các cạnh tạo nên mỗi góc đó, rồi chứng minh chúng bằng nhau. + Bước 3: Từ đó, chứng minh hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ hai để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ hai (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng còn lại bằng nhau.
Chuyên đề trường hợp đồng dạng thứ nhất
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Để chứng minh hai tam giác đồng dạng, ta lập tỉ số các cạnh tương ứng của hai tam giác và chứng minh chúng bằng nhau, từ đó ta được điều phải chứng minh. Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ nhất (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau.
Chuyên đề khái niệm hai tam giác đồng dạng
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề khái niệm hai tam giác đồng dạng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN II. DẠNG BÀI TẬP CƠ BẢN Dạng 1. Vẽ tam giác đồng dạng với tam giác cho trước. Chứng minh hai tam giác đồng dạng. 1. Vẽ tam giác đồng dạng với tam giác cho trước. + Xác định tỉ số đồng dạng. + Kẻ đường thẳng song song với một cạnh của tam giác. 2. Chứng minh hai tam giác đồng dạng. + Sử dụng định nghĩa hoặc định lí nhận biết hai tam giác đồng dạng. Dạng 2: Tính độ dài cạnh, tỉ số đồng dạng thông qua các tam giác đồng dạng. Dạng 3: Chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng.
Chuyên đề tính chất đường phân giác của tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tính chất đường phân giác của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN 1. Định lý: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy. 2. Chú ý: + Định lý vẫn đúng với đối với đường phân giác góc ngoài của tam giác. + Các định lý trên có định lý đảo. II. BÀI TẬP MINH HỌA A. DẠNG BÀI CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng và sử dụng kĩ thuật đại số hóa hình học. + Áp dụng định lí Py-ta-go. DẠNG 2.Tính tỉ số độ dài, tỉ số diện tích hai tam giác. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng. + Sử dụng kĩ thuật đại số hóa hình học. Công thức và kết quả thu được từ công thức tính diện tích tam giác. B. DẠNG BÀI NÂNG CAO