Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL giữa học kỳ 2 Toán 12 năm 2018 - 2019 cụm trường THPT TP Nam Định

giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 đề thi khảo sát chất lượng giữa học kỳ 2 Toán 12 năm học 2018 – 2019 cụm trường THPT thành phố Nam Định, kỳ thi vừa nhằm kiểm tra đánh giá chất lượng Toán 12 giữa học kỳ 2, vừa kiểm tra kiến thức chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán năm 2019 của học sinh khối 12. Đề KSCL giữa học kỳ 2 Toán 12 năm 2018 – 2019 cụm trường THPT TP Nam Định được biên soạn dựa trên cấu trúc đề minh họa THPT Quốc gia 2019 môn Toán do Bộ Giáo dục và Đào tạo công bố, đề có mã 132 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh làm bài thi Toán trong 90 phút. Trích dẫn đề KSCL giữa học kỳ 2 Toán 12 năm 2018 – 2019 cụm trường THPT TP Nam Định : + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 – 4x – 2y + 2z – 19 = 0 và mặt phẳng (P): 2x – y – 2z + m + 3 = 0 với m là tham số. Gọi T là tập tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi bằng 6pi. Tổng giá trị của tất cả các phần tử thuộc T bằng? [ads] + Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là 2dm và 4dm. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số y = √(x + 1). Tính thể tích của bình cắm hoa đó. + Cho hàm số y = f(x) xác định và có đạo hàm cấp một và cấp hai trên khoảng (a;b) và x0 ∈ (a;b). Khẳng định nào sau đây sai? A. Hàm số đạt cực đại tại x0 thì y'(x0) = 0. B. y'(x0) = 0 và y”(x0) > 0 thì x0 là điểm cực tiểu của hàm số. C. y'(x0) = 0 và y”(x0) = 0 thì x0 không là điểm cực trị của hàm số. D. y'(x0) = 0 và y'(x0) ≠ 0 thì x0 là điểm cực trị của hàm số.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lần 1 Toán 12 năm 2020 - 2021 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Chủ Nhật ngày 25 tháng 10 năm 2020, trường THPT Nguyễn Viết Xuân, huyện Vĩnh Tường, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 12 giai đoạn giữa học kỳ 1 (HK1) năm học 2020 – 2021. Đề KSCL lần 1 Toán 12 năm 2020 – 2021 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc mã đề 924 gồm 08 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút. Trích dẫn đề KSCL lần 1 Toán 12 năm 2020 – 2021 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Một cơ sở khoan giếng có đơn giá như sau: giá của mét khoan đầu tiên là 50000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét khoan sau tăng thêm 7% so với giá của mét khoan ngay trước đó. Tính số tiền mà chủ nhà phải trả cho cơ sở khoan giếng để khoan được 50 m giếng gần bằng số nào sau đây? + Ông An mua một chiếc vali mới để đi du lịch, chiếc va li đó có chức năng cài đặt mật khẩu là các chữ số để mở khóa. Có 3 ô để cài đặt mật khẩu mỗi ô là một chữ số. Ông An muốn cài đặt để tổng các chữ số trong 3 ô đó bằng 5. Hỏi ông có bao nhiêu cách để cài đặt mật khẩu như vậy? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AD và BC. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là: A. SG (G là trung điểm AB). B. SD. C. SF (F là trung điểm CD). D. SO (O là tâm hình bình hành ABCD).
Đề KSCL Toán 12 đầu năm học 2020 - 2021 trường Thuận Thành 1 - Bắc Ninh
Chiều Chủ Nhật ngày 04 tháng 10 năm 2020, trường THPT Thuận Thành 1, huyện Thuận Thành, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng đầu năm học môn Toán 12 năm học 2020 – 2021. Đề KSCL Toán 12 đầu năm học 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh gồm 05 trang với 50 câu hỏi và bài tập dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, nội dung đề thi tập trung vào các chương: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (Giải tích 12 chương 1), khối đa diện và thể tích của chúng (Hình học 12 chương 1) và các nội dung quan trọng khác thuộc chương trình Toán lớp 11; đề thi có đáp án mã đề 132. Trích dẫn đề KSCL Toán 12 đầu năm học 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh : + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là: A. Tam giác MNE. B. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. C. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. D. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. + Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá bán này thì cửa hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm là 50 quả. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng. + Hai người ngang tài ngang sức tranh chức vô địch của cuộc thi cờ tướng. Người giành chiến thắng là người đầu tiên thắng được 5 ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván, tính xác suất để người chơi thứ nhất giành chiến thắng?
Đề KSCL đầu năm Toán 12 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Thứ Sáu ngày 09 tháng 10 năm 2020, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng đầu năm môn Toán lớp 12 năm học 2020 – 2021. Đề KSCL đầu năm Toán 12 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh với hai mã đề 101 và 102, đề gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút, nội dung đề thi tập trung vào các phần: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (Giải tích 12 chương 1), khối đa diện và thể tích của chúng (Hình học 12 chương 1) và các kiến thức trọng tâm thuộc chương trình Toán 11; đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề KSCL đầu năm Toán 12 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Trong không gian, khẳng định nào sau đây sai? A. Cho trước bốn điểm phân biệt, luôn có duy nhất một mặt phẳng chứa cả bốn điểm đó. B. Cho trước hai điểm phân biệt, luôn có duy nhất một đường thẳng đi qua hai điểm đó. C. Cho trước hai đường thẳng cắt nhau, luôn có duy nhất một mặt phẳng chứa cả hai đường thẳng đó. D. Cho trước hai đường thẳng song song, luôn có duy nhất một mặt phẳng chứa cả hai đường thẳng đó. + Xét các khẳng định sau đây: (1) Chiều cao của một hình chóp luôn bằng độ dài của cạnh bên nhỏ nhất của hình chóp đó. (2) Chiều cao của một hình chóp luôn bằng độ dài của cạnh bên lớn nhất của hình chóp đó. (3) Chiều cao của một hình lăng trụ bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đáy của hình lăng trụ đó. (4) Chiều cao của một hình lăng trụ không lớn hơn độ dài cạnh bên của hình lăng trụ đó. Số khẳng định đúng là? + Cho hình chóp cụt đều, có hai đáy là các hình lục giác đều cạnh bằng 2 và cạnh bằng 4. Chiều cao của hình chóp cụt bằng 2. Tính diện tích toàn phần của hình chóp cụt đó.
Đề KSCL Toán 12 năm 2019 - 2020 trường THPT chuyên Lê Hồng Phong - Nam Định
Nhằm giúp học sinh khối 12 rèn luyện, chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán, thứ Năm ngày 23 tháng 07 năm 2020, trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020. Đề KSCL Toán 12 năm 2019 – 2020 trường THPT chuyên Lê Hồng Phong – Nam Định mã đề 926 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán 12 năm 2019 – 2020 trường THPT chuyên Lê Hồng Phong – Nam Định : + Cho tập hợp gồm 30 số nguyên dương đầu tiên S = {1; 2; 3; …; 30}. Lấy ngẫu nhiên cùng một lúc ba số khác nhau thuộc S. Gọi P là xác suất để lấy được ba số có tích chia hết cho 4. Hỏi P thuộc khoảng nào sau đây? [ads] + Cho hình hộp ABCD.A’B’C’D’ có diện tích mỗi đáy bằng 4 và khoảng cách giữa hai mặt phẳng chứa đáy bằng 2. Gọi M và N lần lượt là trung điểm của các cạnh AB và AD. Mặt phẳng (a) chứa đường thẳng MN và đi qua tâm của hình hộp cắt các cạnh D’C’ và C’B’ lần lượt tại P và Q. Tính thể tích của khối chóp B’.MNPQ. + Trong mặt phẳng phức, tập hợp tất cả các điểm biểu diễn số phức z thỏa mãn |z + 3| = |z¯ – i| là một đường thẳng l. Tính khoảng cách từ gốc tọa độ đến l.