Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán TN THPT 2023 lần 2 trường chuyên Nguyễn Trãi - Hải Dương

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2022 – 2023 lần 2 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương; đề thi có đáp án mã đề 101 102 103 104. Trích dẫn Đề thi thử Toán TN THPT 2023 lần 2 trường chuyên Nguyễn Trãi – Hải Dương : + Du lịch phát triển, nón lá cũng trở thành mặt hàng lưu niệm mang nét văn hoá đặc sắc được du khách ưa chuộng. Để làm quà cho các du khách tham gia tour du lịch của mình, công ty lữ hành đặt một cơ sở làm 1000 chiếc nón lá giống nhau có độ dài đường sinh là 30 cm. Ở phần mặt trước của mỗi chiếc nón (từ A đến B như hình vẽ), cơ sở thuê người sơn và vẽ hình trang trí. Biết AB cm20 3 và giá tiền công để sơn trang trí 2 1 m là 50000 đồng. Tính số tiền (làm tròn đến hàng nghìn) mà cơ sở đó phải trả để sơn trang trí cho cả đợt làm nón? + Một nam sinh viên muốn có một khoản tiền để mua một chiếc xe máy làm phương tiện đi làm sau khi ra trường. Bạn lên kế hoạch làm thêm và gửi tiết kiệm trong năm cuối đại học. Vào mỗi đầu tháng, bạn đều đặn gửi vào ngân hàng một khoản tiền T (đồng) theo hình thức lãi kép với lãi suất 0,6% mỗi tháng. Biết đến cuối tháng thứ 12 thì bạn đó có số tiền là 20 triệu đồng. Hỏi số tiền T gần với số tiền nào nhất trong các số sau? + Cho hàm đa thức bậc ba y f x và hàm số y g x với đồ thị là Parabol đỉnh I như hình vẽ dưới đây. Biết rằng đồ thị của hai hàm số đã cho cắt nhau tại 3 điểm phân biệt có hoành độ 1 2 3x x x thoả mãn 1 2 3 x x 12. Khi đó diện tích hình phẳng giới hạn bởi các đường y f x y g x x 1 gần số nào nhất trong các số sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Bắc Ninh lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Bắc Ninh lần 1 gồm 8 mã đề, mỗi mã đề gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Nội dung đề thi bao gồm cả chương trình Toán 11 và 12, đề thi thử có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = f(x) = x^3 + 6x^2 + 9x + 3.Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho OA = 2017.OB. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán? A. 0 B. 1 C. 2 D. 3 + Giám đốc một nhà hát A đang phân vân trong việc xác định mức giá vé xem các chương trình được trình chiếu trong nhà hát. Việc này rất quan trọng, nó sẽ quyết định nhà hát thu được bao nhiêu lợi nhuận từ các buổi trình chiếu. Theo những cuốn sổ ghi chép của mình, ông ta xác định rằng: nếu giá vé vào cửa là 20 USD/người thì trung bình có 1000 người đến xem. Nhưng nếu tăng thêm 1 USD/người thì sẽ mất 100 khách hàng hoặc giảm đi 1 USD/người thì sẽ có thêm 100 khách hàng trong số trung bình. Biết rằng, trung bình, mỗi khách hàng còn đem lại 2 USD lợi nhuận cho nhà hát trong các dịch vụ đi kèm. Hãy giúp Giám đốc nhà hát này xác định xem cần tính giá vé vào cửa là bao nhiêu để nhập là lớn nhất? [ads] A. 21 USD/người B. 18 USD/người C. 14 USD/người D. 16 USD/người + Trong không gian, cho các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại B. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau C. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại D. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau
Đề thi chất lượng giữa HKI năm học 2017 - 2018 môn Toán 12 trường THPT B Hải Hậu - Nam Định
Đề thi chất lượng giữa HKI năm học 2017 – 2018 môn Toán 12 trường THPT B Hải Hậu – Nam Định gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = f(x) có đạo hàm f'(x) = x^2 + 1 ∀x∈R. Mệnh đề nào dưới đây đúng? A. Hàm số nghịch biến trên khoảng (1; +∞) B. Hàm số đồng biến trên khoảng (-∞; +∞) C. Hàm số nghịch biến trên khoảng (-1; 1) D. Hàm số nghịch biến trên khoảng (-∞; 0) [ads] + Số các đỉnh hoặc số các mặt của hình đa diện bất kỳ đều thỏa mãn: A. Lớn hơn hoặc bằng 4 B. Lớn hơn 4 C. Lớn hơn hoặc bằng 5 D. Lớn hơn 6 + Hàm số y = 1/4.x^4 – 2.x^2 + 1 có: A. Một điểm cực đại và hai điểm cực tiểu B. Một điểm cực tiểu và một điểm cực đại C. Một điểm cực tiểu và hai điểm cực đại D. Một điểm cực đại và không có điểm cực tiểu
Đề thi giữa học kỳ I năm học 2017 - 2018 môn Toán 12 trường THPT Xuân Trường - Nam Định
Đề thi giữa học kỳ I năm học 2017 – 2018 môn Toán 12 trường THPT Xuân Trường – Nam Định gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết các câu hỏi phân loại. Trích dẫn đề thi : + Một doanh nghiệp sản xuất và bán một loại sản phẩm với giá 45 (ngàn đồng) mỗi sản phẩm, tại giá bán này khách hàng sẽ mua 60 sản phẩm mỗi tháng. Doanh nghiệp dự định tăng giá bán và họ ước tính rằng nếu tăng 2 (ngàn đồng) trong giá bán thì mỗi tháng sẽ bán ít hơn 6 sản phẩm. Biết rằng chi phí sản xuất mỗi sản phẩm là 27 (ngàn đồng). Vậy doanh nghiệp nên bán sản phẩm với giá nào để lợi nhuận thu được là lớn nhất? A. 46 ngàn đồng B. 47 ngàn đồng C. 48 ngàn đồng D. 49 ngàn đồng [ads] + Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, có BC = a; Mặt bên SAC vuông góc với đáy, các mặt bên còn lại đều tạo với mặt đáy một góc 45 độ. Tính thể tích khối chóp SABC. A. a^3/12 B. a^3 C. a^3/6 D. a^3/24 + Kết luận nào sau đây về tính đơn điệu của hàm số y = (2x + 1)/(x + 1) là đúng? A. Hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞) B. Hàm số đồng biến trên các khoảng (-∞; -1) và (-1; +∞) C. Hàm số luôn luôn đồng biến trên R\{-1} D. Hàm số luôn luôn nghịch biến trên R\{-1}
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Nguyễn Đức Thuận - Nam Định lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Nguyễn Đức Thuận – Nam Định lần 1 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Xét 4 mệnh đề sau: (1): Hàm số y = sinx có tập xác định là R (2): Hàm số y = cosx có tập xác định là R (3): Hàm số y = tanx có tập xác định là R (4): Hàm số y = cotx có tập xác định là R Tìm số phát biểu đúng. A. 3 B. 2 C. 4 D. 1 [ads] + Cho hàm số y = -x^4 – 2x^2 + 3. Tìm khẳng định sai? A. Hàm số đạt cực tiểu tại x = 0 B. Hàm số đồng biến trên khoảng (-∞; 0) C. Hàm số đạt cực đại tại x = 0 D. Hàm số nghịch biến trên (0; +∞) + Cho hàm số y = sin2x. Hãy chọn câu đúng. A. y^2 + (y’)^2 = 4 B. 4y – y” = 0 C. 4y + y” = 0 D. y = y’.tan2x