Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 7 môn Toán cấp trường năm 2018 2019 trường THCS Sông Trí Hà Tĩnh

Nội dung Đề học sinh giỏi lớp 7 môn Toán cấp trường năm 2018 2019 trường THCS Sông Trí Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 7 cấp trường năm 2018-2019 trường THCS Sông Trí Hà Tĩnh Đề thi học sinh giỏi Toán lớp 7 cấp trường năm 2018-2019 trường THCS Sông Trí Hà Tĩnh Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 7 đề khảo sát cho đội tuyển học sinh giỏi môn Toán lớp 7 cấp trường năm học 2018 – 2019 của trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh. Đề thi bao gồm lời giải chi tiết và thang chấm điểm. Trích đề học sinh giỏi Toán lớp 7 cấp trường năm 2018 – 2019 trường THCS Sông Trí – Hà Tĩnh: Cho tam giác ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng bờ là đường thẳng AB chứa điểm C vẽ đoạn thẳng AE ⊥ AB sao cho AE = AB. Trên nửa mặt phẳng bờ là đường thẳng AC chứa điểm B vẽ đoạn thẳng AD ⊥ AC sao cho AD = AC. a) Chứng minh BD = CE b) Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh ADE ≅ CAN c) Gọi K là giao điểm của DE và AM. Chứng minh AD^2 + KE^2 = AK^2 Trong cuộc thi tìm kiếm tài năng toán học có 20 câu hỏi. Mỗi câu trả lời đúng được 10 điểm, câu sai bị trừ đi 3 điểm. Một bạn học sinh đạt 148 điểm. Hỏi bạn đó trả lời đúng bao nhiêu câu hỏi. Tính chu vi của một tam giác cân biết độ dài hai cạnh là 2,4 cm và 5 cm. Đề thi này đưa ra các bài toán có tính logic, khéo léo và đòi hỏi sự tư duy logic của học sinh. Việc giải quyết các bài toán này không chỉ giúp học sinh rèn luyện kỹ năng Toán mà còn phát triển tư duy logic, sáng tạo và khả năng suy luận.

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh năng khiếu Toán 7 năm 2020 - 2021 phòng GDĐT Sơn Dương - Tuyên Quang
Đề chọn học sinh năng khiếu Toán 7 năm 2020 – 2021 phòng GD&ĐT Sơn Dương – Tuyên Quang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Yên Định - Thanh Hóa
Đề học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Yên Định – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 02 tháng 02 năm 2021, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Yên Định – Thanh Hóa : + Tìm một số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau, 2 chữ số cuối giống nhau. + Tìm các số nguyên dương n và các số nguyên tố p sao cho n n p. + Cho ABC có góc A nhỏ hơn 900. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc với AB và AM = AB, trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN sao cho AN vuông góc với AC và AN = AC. a) Chứng minh rằng: AMC = ABN. b) Chứng minh: BN CM. c) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN.
Đề HSG huyện Toán 7 năm 2020 - 2021 phòng GDĐT Thạch Thành - Thanh Hóa
Thứ Ba ngày 30 tháng 03 năm 2021, phòng Giáo dục và Đào tạo huyện Thạch Thành, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020 – 2021. Đề HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Thạch Thành – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút.
Đề HSG Toán 7 cấp trường năm 2020 - 2021 trường THCS Văn Tiến - Vĩnh Phúc
Đề HSG Toán 7 cấp trường năm 2020 – 2021 trường THCS Văn Tiến – Vĩnh Phúc gồm 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án + lời giải chi tiết + thang chấm điểm. Trích dẫn đề HSG Toán 7 cấp trường năm 2020 – 2021 trường THCS Văn Tiến – Vĩnh Phúc : + Trong một đợt lao động, ba khối 7, 8, 9 chuyên chở được 912 m3 đất. Trung bình mỗi học sinh khối 7, 8, 9 theo thứ tự làm được 1,2; 1,4; 1,6 m3 đất. Số học sinh khối 7, 8 tỉ lệ với 1 và 3. Khối 8 và 9 tỉ lệ với 4 và 5. Tính số học sinh mỗi khối. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a/ AC = EB và AC // BE. b/ Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: AI = EK. Chứng minh: I, M, K thẳng hàng. c/ Từ E kẻ EH BC (H BC). Biết góc HBE bằng 500; góc MEB bằng 250, tính các góc HEM và BME? + Tính giá trị của các biểu thức sau.