Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL học sinh giỏi Toán 8 năm 2023 - 2024 trường THCS Công Liêm - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Công Liêm, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày … tháng 01 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL học sinh giỏi Toán 8 năm 2023 – 2024 trường THCS Công Liêm – Thanh Hóa : + Cho A 64 3 2 n n 2n 2n (với n N n 1). Chứng minh A không phải là số chính phương. + Cho hình thang ABCD (AB CD AB CD). Gọi O là giao điểm của AC với BD và I là giao điểm của DA với CB. Gọi M và N lần lượt là trung điểm của AB và CD. a) Chứng minh: OA OB IA IB OC OD IC ID. b) Chứng minh: Bốn điểm I O M N thẳng hàng. c) Giả sử 3AB CD và diện tích hình thang ABCD bằng S. Hãy tính diện tích tứ giác IAOB theo S. + Cho a, b, c là các số thực dương thay đổi thỏa mãn abc3. Tìm giá trị nhỏ nhất của biểu thức: 2 22 ab bc ca Pa b c.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 8 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 8, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 8 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 8 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 8 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho tam giác ABC, gọi M, N lần lượt là trung điểm của AB, AC. a) Tứ giác BCNM là hình gì? Vì sao? b) Gọi Q là trung điểm của NC. Đường thẳng qua Q song song với BC cắt BN tại E. Đường thẳng qua C song song với BN cắt đường thẳng QE tại K. Chứng minh rằng EK = BC. c) Đường thẳng QE cắt CM tại F. Chứng minh EF = 1/4.BC. d) Đường thẳng qua E vuông góc với AB cắt đường thẳng qua F vuông góc với AC tại I. Chứng minh tam giác BIC cân. + Chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến: A = (x – 3)^3 – x(x^2 + 27) + (3x)^2. + Tìm giá trị nhỏ nhất của biểu thức sau: Q = 3x^2 + 2y^2 + 4z^2 + 2xy + 4yz + 4xz – 4x – 2y + 5.