Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 10 năm 2023 - 2024 cụm Hiệp Hòa - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 năm học 2023 – 2024 cụm Hiệp Hòa, tỉnh Bắc Giang. Đề thi được biên soạn theo cấu trúc định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Tự luận. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi học sinh giỏi Toán 10 năm 2023 – 2024 cụm Hiệp Hòa – Bắc Giang : + Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi hóa, 6 học sinh giỏi cả Toán và Lý, 5 học sinh giỏi cả Hóa và Lý, 4 học sinh giỏi cả Toán và Hóa, 3 học sinh giỏi cả ba môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một trong ba môn (Toán, Lý, Hóa) của lớp 10A là? + Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ. Bán kính của chiếc đĩa này bằng? + Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210 g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Hiệu số a b là?

Nguồn: toanmath.com

Đọc Sách

Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân Cầu Giấy Thường Tín - Hà Nội
Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội nhằm giao lưu đội tuyển học sinh giỏi môn Toán khối 10 của ba trường: trường THPT Thanh Xuân (Hà Nội), trường THPT Cầu Giấy (Hà Nội), trường THPT Thường Tín (Hà Nội), đề thi được biên soạn theo dạng tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề), lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán. Trích dẫn đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD. Gọi H là hình chiếu của A lên BD; I là trung điểm của BH. Biết đỉnh A(2;1), phương trình đường chéo BD là: x + 5y – 19 = 0, điểm I(42/13;41/13). a) Viết phương trình tham số đường thẳng AH. Tìm tọa độ điểm H? b) Viết phương trình tổng quát cạnh AD. [ads] + Cho tam giác ABC, đặt a = BC, b = AC, c = AB. Gọi M là điểm tùy ý. a) Tìm giá trị nhỏ nhất của biểu thức P = MA^2 + MB^2 + MC^2 theo a, b, c. b) Giả sử a = √6 cm, b = 2 cm, c = (1 + √3) cm. Tính số đo góc nhỏ nhất của tam giác ABC và diện tích tam giác ABC. + Cho hàm số y = x^2 – 2x + 2. a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số. b) Tìm m để phương trình -x^2 + 2x – 2 – m = 0 có hai nghiệm x1 và x2 thỏa mãn: x1 < -1 < 3 < x2.
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 - 2018 trường THPT Thanh Miện - Hải Dương
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 – 2018 trường THPT Thanh Miện – Hải Dương gồm 5 bài toán tự luận,thời gian làm bài 180 phút, đề thi HSG có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD, điểm M (-2; 0) là trung điểm của cạnh AB, điểm H(1; -1) là hình chiếu của B trên AD và điểm G(7/3; 3) là trọng tâm tam giác BCD. Đường thẳng HM cắt BC tại E, đường thẳng HG cắt BC tại F. Tìm tọa độ các điểm E, F và B. [ads] + Cho tam giác ABC có trọng tâm là G. Hai điểm D và E được xác định bởi các hệ thức vectơ vtAD = 2.vtAB; vtAE = 2/5.vtAC. Chứng minh rằng: D, E, G thẳng hàng. + Gọi H là trực tâm tam giác ABC, M là trung điểm của BC. Chứng minh rằng vtMH.vtMA = 1/4.BC^2.