Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán năm 2021 2022 trường THCS Lê Quý Đôn Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán năm 2021 2022 trường THCS Lê Quý Đôn Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát môn Toán lớp 9 năm 2021 - 2022 Đề khảo sát môn Toán lớp 9 năm 2021 - 2022 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề khảo sát chất lượng môn Toán lớp 9 năm học 2021 - 2022 của trường THCS Lê Quý Đôn, Hà Nội. Đề thi sẽ diễn ra vào ngày 31 tháng 05 năm 2022, với đầy đủ đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trích dẫn từ đề khảo sát Toán lớp 9 năm 2021 - 2022 trường THCS Lê Quý Đôn - Hà Nội: 1. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai vòi cùng chảy vào một bể không có nước thì sau 1 giờ 20 phút đầy bể. Nếu để vòi I chảy một mình trong 10 phút rồi khóa lại và mở tiếp vòi II chảy trong 12 phút thì cả hai vòi chảy được đầy bể. Hỏi thời gian mỗi vòi chảy một mình đầy bể? 2. Một chiếc nón có đường kính đáy bằng 40cm, độ dài đường sinh là 30cm. Người ta lát mặt xung quanh hình nón bằng 3 lớp lá khô. Hãy tính diện tích lá cần dùng để tạo nên chiếc nón đó (lấy pi = 3.14). 3. Cho đường tròn tâm O bán kính R có hai đường kính AB, CD vuông góc với nhau. Lấy điểm M thuộc đoạn thẳng OA. Tia DM cắt đường tròn (O) tại N. Hãy chứng minh các điểm O, M, N, C cùng thuộc một đường tròn và các bước chứng minh khác trong đề. Hy vọng rằng đề khảo sát này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN - Hà Nội (Vòng 2)
Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN – Hà Nội (Vòng 2) gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2021.
Đề khảo sát Toán 9 năm 2020 - 2021 trường Hoàng Hoa Thám - Hà Nội
Đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề khảo sát Toán 9 lần 3 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho đường tròn (O, 3cm) và đường tròn (O’, 4cm). Biết độ dài đoạn nối tâm OO’ = 6cm. Khẳng định nào sau đây đúng? A. Hai đường tròn (O) và (O’) tiếp xúc nhau. B. Hai đường tròn (O) và (O’) cắt nhau. C. Hai đường tròn (O) và (O’) ở ngoài nhau. D. Đường tròn (O’) đựng đường tròn (O). + Cho hai đường tròn (O), (O’) tiếp xúc ngoài tại A. Gọi AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O’), DE là tiếp tuyến chung của hai đường tròn. K là giao điểm của BD và CE. a) Tính số đo DAE. b) Tứ giác ADKE là hình gì? Vì sao? c) Chứng minh AK là tiếp tuyến chung của 2 đường tròn (O) và (O’). d) Gọi M là trung điểm của BC. Chứng minh MK DE. + Cho hàm số bậc nhất: y = (m – 1)x + 1 (m là tham số). a) Tìm m để hàm số nghịch biến trên R. b) Vẽ đồ thị hàm số khi m = -1. c) Tìm m để đồ thị của hàm số đã cho cắt đường thẳng y = x -3 tại điểm có hoành độ bằng -2.
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Một máy bay cất cánh theo phương có góc nghiêng là 23°. Hỏi muốn đạt độ cao là 2500m, máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn đến mét). + Cho tam giác đều ABC nội tiếp đường tròn tâm O. Trên cạnh BC lấy điểm N, gọi E và F theo thứ tự là hình chiếu của N lên AB, AC. Gọi D là trung điểm của ВC. a) Chứng minh rằng bốn điểm A, E, N, F cùng thuộc một đường tròn. Xác định tâm I của đường tròn đó. b) Chứng minh rằng BN.BD = BE.BA. c) Chứng minh rằng ED = FD. d) Gọi H là giao điểm của hai đường chéo của tứ giác EIFD. Chứng minh O, H, N thẳng hàng. + Cho xy + yz + zx = 1. Tìm giá trị nhỏ nhất của P = 3(x2 + y2) + z2.