Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2018 2019 sở GD ĐT Cần Thơ

Nội dung Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2018 2019 sở GD ĐT Cần Thơ Bản PDF Ngày 27 tháng 02 năm 2019, sở Giáo dục và Đào tạo Cần Thơ tổ chức kỳ thi chọn học sinh giỏi khối THPT cấp thành phố lớp 12 môn Toán năm học 2018 – 2019. Đề thi học sinh giỏi Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ gồm 02 trang với 08 bài toán tự luận, học sinh làm bài thi trong 180 phút, đề thi có lời giải chi tiết (lời giải được trình bày bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi học sinh giỏi Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ : + Một lớp học trong một trường đại học có 60 sinh viên, trong đó có 40 sinh viên học tiếng Anh, 30 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên 2 sinh viên của lớp học này. Tính xác suất để 2 sinh viên được chọn không học ngoại ngữ. Biết rằng trường này chỉ dạy hai ngoại ngữ là tiếng Anh và tiếng Pháp. [ads] + Năm bạn học sinh Tính, Nghĩa, Tuấn, Phú và Thuận ở chung một phòng trong ký túc xá của một trường trung học phô thông. Một hôm, người quản lý ký túc xá đến phòng của năm học sinh này để xác định lại hộ khẩu nhà của từng học sinh. Vì đều là học sinh giỏi toán nên các học sinh không trả lời trực tiếp mà nói với người quản lý ký túc xá như sau: – Tính: “Nhà bạn Phú ở Thới Lai còn nhà em ở Cờ Đỏ”. – Nghĩa: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Tuấn ở Ô Môn”. – Tuấn: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Phú ở Thốt Nốt”. – Phú: “Nhà em ở Thới Lai còn nhà bạn Thuận ở Ninh Kiều”. – Thuận: “Nhà em ở Ninh Kiều còn nhà bạn Tính ở Thốt Nốt. Em hãy giúp người quản lý ký túc xá xác định đúng hộ khẩu nhà của các học sinh trên. Biết răng trong câu trả lời của mỗi học sinh đều có một phần đúng và một phần sai đồng thời mỗi địa phương là địa chỉ hộ khâu của đúng một học sinh. + Một nhà sản xuất sữa bột dành cho trẻ em cần thiết kế bao bì cho loại sản phẩm mới. Theo yêu cầu của lãnh đạo nhà máy, hộp sữa mới có dạng hình hộp chữ nhật với đáy là hình vuông hoặc có dạng một hình trụ. Biết rằng hộp sữa mới có thể tích bằng 1dm3. Hãy giuýp lãnh đạo nhà máy thiết kế hộp sữa này sao cho vật liệu sử dụng làm bao bì là ít nhất.

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Cẩm Thủy 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi liên trường môn Toán 12 năm 2022 – 2023 lần 1 trường THPT Cẩm Thủy 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THPT Cẩm Thủy 1 – Thanh Hóa : + Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1mvà 1,8m . Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích của hai bể nước trên. Bán kính đáy của bể nước dự định làm gần nhất với kết quả nào dưới đây? + Người ta thiết kế một thùng chứa hình trụ (như hình vẽ) có thể tích V. Biết rằng giá của vật liệu làm mặt đáy và nắp của thùng bằng nhau và đắt gấp ba lần so với giá vật liệu để làm mặt xung quanh của thùng (chi phí cho mỗi đơn vị diện tích). Gọi chiều cao của thùng là h và bán kính đáy là r. Tính tỉ số h r sao cho chi phí vật liệu sản xuất thùng là nhỏ nhất? + Trong hội thi văn nghệ chào mừng ngày nhà giáo Việt Nam có 9 tiết mục lọt vào vòng chung khảo. Trong đó lớp 10A có 2 tiết mục, lớp 10B có 3 tiết mục và 4 tiết mục còn lại của 4 lớp khác nhau. Ban tổ chức sắp xếp thứ tự thi của các lớp một cách ngẫu nhiên. Tính xác suất để không có hai tiết mục của cùng một lớp liên tiếp nhau.
Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THCS THPT Như Xuân - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát học sinh giỏi môn Toán 12 năm học 2022 – 2023 lần 1 trường THCS & THPT Như Xuân, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian 90 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THCS & THPT Như Xuân – Thanh Hóa : + Một vận động viên bắn ba viên đạn vào bia với ba lần bắn độc lập. Xác suất để vận động viên bắn trúng vòng 10 điểm là 0,15. Xác suất để vận động viên bắn trúng vòng 8 điểm là 0,2. Xác suất để vận động viên bắn trúng vòng dưới 8 điểm là 0,3. Tính xác suất để vận động viên đó được ít nhất 28 điểm (tính chính xác đến hàng phần nghìn). + Cho khối nón có độ lớn góc ở đỉnh là 3, một khối cầu S1 nội tiếp trong khối nón. Gọi S2 là khối cầu tiếp xúc với tất cả các đường sinh của nón và với S1. Gọi S3 là khối cầu tiếp xúc với tất cả các đường sinh của khối nón và với S2, tương tự với khối cầu S4 S5. Gọi 1 2 V V V3 4 5 V V lần lượt là thể tích của khối cầu S S 1 2 3 và V là thể tích của khối nón. Giá trị V V 4 5 T V gần giá trị nào sau đây (làm tròn 2 chữ số sau dấu phẩy)? + Cần phải thiết kế các thùng dạng hình trụ có nắp đậy để đựng nước sạch có dung tích 3 V cm. Hỏi bán kính R(cm) của đáy hình trụ nhận giá trị nào sau đây để tiết kiệm vật liệu nhất?
Đề chọn HSG Toán THPT năm 2022 - 2023 trường Đại học Sư Phạm Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán THPT cấp trường năm học 2022 – 2023 trường Đại học Sư Phạm Hà Nội, thành phố Hà Nội. Trích dẫn Đề chọn HSG Toán THPT năm 2022 – 2023 trường Đại học Sư Phạm Hà Nội : + Cho hàm số y = (2x – 3)/(x – 2) có đồ thị (C) và hai điểm A, B thay đổi thuộc (C) sao cho hoành độ của điểm A nhỏ hơn 2, hoành độ của điểm B lớn hơn 2. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB. + Lấy ngẫu nhiên ba số trong tập hợp S = {1; 2; 3; …; 19; 20}. Tính xác suất để hiệu của hai số bất kì trong ba số đó (số lớn trừ số bé) không nhỏ hơn 2. + Cho tứ diện ABCD có hai mặt ACD và BCD là các tam giác nhọn. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác BCD, G’ và H’ lần lượt là trọng tâm và trực tâm của tam giác ACD. Biết rằng đường thẳng HH’ vuông góc với mặt phẳng (ACD). a) Chứng minh rằng bốn điểm A, B, H và H’ đồng phẳng. b) Chứng minh rằng đường thẳng GG’ vuông góc với mặt phẳng (BCD).
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Tiền Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tiền Giang; kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.