Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 10 môn Toán lần 2 năm 2020 2021 trường THPT Quang Hà Vĩnh Phúc

Nội dung Đề kiểm tra lớp 10 môn Toán lần 2 năm 2020 2021 trường THPT Quang Hà Vĩnh Phúc Bản PDF Đề kiểm tra chuyên đề môn Toán lớp 10 lần 2 năm học 2020 – 2021 trường THPT Quang Hà – Vĩnh Phúc được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 07 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra Toán lớp 10 lần 2 năm 2020 – 2021 trường THPT Quang Hà – Vĩnh Phúc : + Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Để sản xuất được một kilôgam sản phẩm loại I cần 2kg nguyên liệu và máy làm việc trong 3 giờ. Để sản xuất được một kilôgam sản phẩm loại II cần 4kg nguyên liệu và máy làm việc trong 1,5 giờ. Biết một kilôgam sản phẩm loại I lãi 300000 đồng, một kilôgam sản phẩm loại II lãi 400000 đồng và máy chuyên dụng làm việc không quá 120 giờ. Hỏi xưởng cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất? + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5ha. Để chăm bón các loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Xác định dạng của tam giác ABC biết các góc A, B, C của tam giác đó thỏa mãn hệ thức.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra định kỳ lần 2 Toán 10 năm 2019 - 2020 trường THPT chuyên Bắc Ninh
Đề kiểm tra định kỳ lần 2 Toán 10 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh gồm có hai đề riêng biệt: đề dành cho các lớp 10 chuyên Vật lý – chuyên Hóa học – chuyên Tin học và đề dành cho các lớp 10 chuyên Ngữ Văn – chuyên Sinh học – chuyên Tiếng Anh, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề kiểm tra định kỳ lần 2 Toán 10 năm 2019 – 2020 trường THPT chuyên Bắc Ninh : + Cho hàm số y = -x^2 + (2m – 3)x + 1 – m^2 (trong đó m là tham số). a) Lập bảng biến thiên và vẽ đồ thị hàm số với m = 2. b) Tìm tất cả giá trị của m đề đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác O và nằm khác phía nhau đối với điểm O. c) Tìm điều kiện của tham số m để hàm số đã cho nghịch biến trên khoảng (0;2019). + Trên mặt phẳng tọa độ Oxy cho bốn điểm A(0;1), B(-1;3), C(5;6), D(4;3). a ) Chứng tỏ rằng bốn điểm đã cho tạo thành một hình thang có đáy là AD và BC. b) Biết I là điểm thỏa mãn 2.IA + 2.IB + 3.IC + 3.ID = 0. Chứng minh I nằm trên đường trung bình của hình thang tạo bởi bốn điểm đã cho. + Cho ba số thực không âm a, b, c thỏa mãn a + b + c = 3 và không có số nào lớn hơn 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = √(1 + a) + √(1 + b) + √(1 + c).
Đề kiểm tra Toán 10 năm học 2019 - 2020 trường THPT Đống Đa - Hà Nội
giới thiệu đến quý thầy, cô cùng các em học sinh đề kiểm tra giữa học kì 1 môn Toán 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội, đề gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề kiểm tra Toán 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội : + Xét tính chẵn lẻ của hàm số y = 2x^3 – 3x. + Tìm m sao cho hàm số sau là hàm số chẵn: y = x^4 – 3x^2 + (m – 2)x + 4m – 1. + Cho tam giác ABC với trọng tâm G. a) Chứng minh rằng với mọi điểm D bất kì ta luôn có AC + DA + BD = AD – CD + BA. b) Tìm tập hợp các điểm M thỏa mãn |AB + MA| = |AB – AC|. c) Gọi I là điểm đối xứng với A qua B, đường thẳng IG cắt AC tại E. Tính tỉ số EA/EC.
Đề kiểm tra Toán 10 đầu năm học 2019 - 2020 trường Ngô Gia Tự - Phú Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra chất lượng môn Toán 10 đầu năm học 2019 – 2020 trường THPT Ngô Gia Tự – Phú Yên, đề thi gồm 04 trang với 35 câu trắc nghiệm và 03 câu tự luận, học sinh làm bài trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm tra Toán 10 đầu năm học 2019 – 2020 trường Ngô Gia Tự – Phú Yên : + Trong các phát biểu thành lời mệnh đề “∃x thuộc R | x^2 = 2” phát biểu nào sau đây là đúng? A. Nếu x là số thực thì bình phương của nó bằng 2. B. Bình phương của mọi số thực đều bằng 2. C. Có ít nhất một số thực mà bình phương của nó bằng 2. D. Có duy nhất một số thực mà bình phương của nó bằng 2. [ads] + Trong các phát biểu sau, có bao nhiêu phát biểu là mệnh đề? a/ Tuy Hòa là thành phố của tỉnh Bình Định. b/ Sông Đà rằng chảy qua thành phố Tuy Hòa. c/ Trời hôm nay nắng đẹp quá! d/ 6 + 8 = 15. e/ x + 2 = 3. + Cách phát biểu nào sau đây không thể dùng để phát biểu mệnh đề A ⇒ B. A. B là điều kiện đủ để có A. B. A kéo theo B. C. Nếu A thì B. D. A là điều kiện đủ để có B.
Đề thi KSCL đầu năm Toán 10 năm 2019 - 2020 trường Hải An - Hải Phòng
Tuần qua, trường THPT Hải An (Nam Hải, Hải An, Hải Phòng) đã tổ chức kỳ thi khảo sát chất lượng đầu năm học 2019 – 2020 môn Toán lớp 10, nhằm đánh giá tình hình học tập của học sinh khối 10 của nhà trường sau những tuần học đầu tiên. Đề thi KSCL đầu năm Toán 10 năm 2019 – 2020 trường Hải An – Hải Phòng có mã đề 134, đề được biên soạn theo dạng đề trắc nghiệm khách quan hoàn toàn với 50 câu hỏi và bài toán, đề thi gồm có 01 trang, thời gian làm bài dành cho học sinh là 90 phút, nội dung kiểm tra nằm trong những chủ đề kiến thức Toán 10 mà học sinh vừa được học, đề kiểm tra có đáp án các mã đề 134, 210, 356, 483, 568, 641, 709, 897. [ads] Trích dẫn đề thi KSCL đầu năm Toán 10 năm 2019 – 2020 trường Hải An – Hải Phòng : + Mệnh đề nào sau đây đúng: A. Hai vectơ cùng phương với một vectơ thứ ba thì cùng phương. B. Hai vectơ cùng phương với một vectơ thứ ba khác vectơ 0 thì cùng phương. C. Hai vectơ cùng phương với một vectơ thứ ba thì cùng hướng. D. Hai vectơ ngược hướng với một vectơ thứ ba thì cùng hướng. + Cho tam giác ABC có với các yếu tố trong hình vẽ bên (H1.1). Khi đó đẳng thức nào sau đây đúng? + Chọn khẳng định sai: A. Nếu I là trung điểm đoạn AB thì AI + IB = AB. B. Nếu I là trung điểm đoạn AB thì IA + BI = 0. C. Nếu I là trung điểm đoạn AB thì AI + BI = 0. D. Nếu I là trung điểm đoạn AB thì IA + IB = 0.