Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề tham khảo giữa học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 phòng GD ĐT TP Hải Dương

Nội dung Bộ đề tham khảo giữa học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 phòng GD ĐT TP Hải Dương Bản PDF - Nội dung bài viết Bộ đề tham khảo giữa học kì 1 lớp 8 môn Toán năm 2023 2024 phòng GD ĐT TP Hải DươngBiểu thức đại sốTứ giác Bộ đề tham khảo giữa học kì 1 lớp 8 môn Toán năm 2023 2024 phòng GD ĐT TP Hải Dương Chào các thầy cô giáo và các em học sinh lớp 8! Sytu xin giới thiệu đến bạn bộ đề tham khảo kiểm tra giữa học kỳ 1 môn Toán lớp 8 năm học 2023 – 2024 do phòng Giáo dục và Đào tạo thành phố Hải Dương biên soạn. Các đề thi trong bộ đề được thiết kế theo tỷ lệ 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút. Đề thi bao gồm ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm để giúp các em tự kiểm tra và tự đánh giá năng lực của mình. Dưới đây là một số nội dung cụ thể trong bộ đề tham khảo Biểu thức đại số Trọng tâm của phần này là đa thức nhiều biến, bao gồm các phép toán cộng, trừ, nhân, chia các đa thức. Các khái niệm về đơn thức, đa thức nhiều biến được nhấn mạnh để học sinh có thể nhận biết và áp dụng vào các bài toán. Người học cũng cần nắm vững cách tính giá trị của đa thức khi biết giá trị của các biến, thu gọn đơn thức, đa thức, phép nhân và chia đa thức. Họ cũng cần hiểu về hằng đẳng thức và biết áp dụng để giải các bài tập thực hành. Tứ giác Phần này tập trung vào kiến thức về tứ giác và các tính chất đặc biệt của chúng. Học sinh được hướng dẫn nhận biết tứ giác lồi, điều này quan trọng để giải các bài tập phân loại hình học. Họ cũng cần biết về tỷ lệ của tổng các góc trong một tứ giác lồi, tính chất của hình thang cân, hình bình hành, hình chữ nhật, hình thoi và hình vuông. Nắm vững kiến thức này giúp học sinh xây dựng cơ sở vững chắc trong hình học tứ giác. Quý thầy cô giáo và các em học sinh có thể tải về file WORD để sử dụng và tham khảo. Chúc các em học tốt và đạt kết quả cao trong kiểm tra!

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường THCS Lương Yên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Lương Yên, thành phố Hà Nội. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường THCS Lương Yên – Hà Nội : + Rút gọn rồi tính giá trị các biểu thức sau: a) A = (x + y)(x − y) + y2 tại x = 100. b) B = (3x – 1)2 – 2(3x – 1)(x + 2) + (x + 2)2 tại x = 31,5. + Cho tam giác ABC nhọn, có E là trung điểm của AC. Qua E kẻ ED // AB (D thuộc BC); EF // BC (F thuộc AB) a) Cho ED = 6cm. Tính độ dài cạnh AB. b) Chứng minh rằng tứ giác BFEC là hình thang. Chứng minh tứ giác BDEF là hình bình hành. c) Gọi H là điểm đối xứng của D qua F. Chứng minh rằng HB // AD. d) Tìm điều kiện của tam giác ABC để HF = AB/2. + Tìm giá trị lớn nhất của biểu thức: P(x) = −x2 + 11x + 2022.
Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường THCS Đoàn Thị Điểm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đánh giá chất lượng giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Đoàn Thị Điểm, quận Nam Từ Liêm, thành phố Hà Nội; đề thi được biên soạn theo cấu trúc 20% trắc nghiệm + 80% tự luận, thời gian làm bài 90 phút. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường THCS Đoàn Thị Điểm – Hà Nội : + Chọn khẳng định đúng trong các khẳng định sau: A. Hình thang có hai cạnh bên bằng nhau là hình thang cân. B. Hình thang có hai cạnh bên bằng nhau là hình bình hành. C. Hình thang có hai cạnh bên song song là hình thang cân. D. Hình thang có hai cạnh bên song song là hình bình hành. + Cho hình chữ nhật MNPQ (MN < NP). Kẻ NH vuông góc MP (H thuộc MP). Gọi E là trung điểm của MH, F là trung điểm của PQ, I là trung điểm của NH. a) Cho MN = 10 cm. Tính EI? b) Chứng minh tứ giác EIPF là hình bình hành. c) Chứng minh NE vuông góc với EF. + Hai chị em Linh và Minh cùng chơi bập bênh ở công viên. Chiều cao của trụ bập bệnh là 60cm và khoảng cách từ chỗ ngồi của hai chị em đến trụ bập bênh là như nhau. Biết rằng khoảng cách từ chỗ ngồi của Minh đến mặt đất gấp 3 lần khoảng cách từ chỗ ngồi của Linh đến mặt đất. Hỏi mỗi người ngồi cách mặt đất bao nhiêu cm?
Đề giữa kì 1 Toán 8 năm 2022 - 2023 trường THCS Nguyễn Công Trứ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đánh giá chất lượng giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Nguyễn Công Trứ, quận Ba Đình, thành phố Hà Nội; đề thi được biên soạn theo cấu trúc 100% tự luận, thời gian làm bài 80 phút; đề thi có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Sáu ngày 04 tháng 11 năm 2022. Trích dẫn Đề giữa kì 1 Toán 8 năm 2022 – 2023 trường THCS Nguyễn Công Trứ – Hà Nội : + Cho biểu thức A = (x − 2)2 + (x – 3)(x + 3) + 4x a) Rút gọn biểu thức A. b) Tính giá trị của biểu thức A tại x = 2. + Để đo khoảng cách giữa hai điểm B và C bị ngăn bởi một cái hồ nước, người ta đóng các cọc ở vị trí A, B, C, M, N (như hình vẽ). Biết độ dài của đoạn MN = 48m. Tính khoảng cách giữa hai điểm B và C? + Cho tam giác ABC nhọn (AB < AC). Gọi D, F lần lượt là trung điểm của AB, BC. Lấy điểm G đối xứng với điểm D qua điểm F. a) Chứng minh rằng: tứ giác BDCG là hình bình hành. b) Qua A kẻ tia Ax song song với BC. Qua F kẻ tia Fy song song với AB. Gọi H là giao điểm của Ax và Fy. Chứng minh rằng: AF // HC. c) Lấy điểm K trên đoạn thẳng HC sao cho: HK = 1/3.HC. Gọi I là trung điểm của AC. Gọi J là giao điểm của AF và DC. Chứng minh rằng: Ba điểm J, I, K thẳng hàng.
Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường THCS Nghĩa Tân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Nghĩa Tân, thành phố Hà Nội. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường THCS Nghĩa Tân – Hà Nội : + Cho biểu thức: A = (x − y)2 + 2x(x + y). a) Rút gọn biểu thức A. b) Tính giá trị của biểu thức A khi x = 1 và y = −3. + Cho tam giác ABC nhọn, có M là trung điểm của BC. Trên tia đối của tia MA, lấy điểm D sao cho MD = MA. a) Chứng minh rằng: ABDC là hình bình hành. b) Lấy điểm E đối xứng với A qua đường thẳng BC; AE cắt BC tại H. Chứng minh rằng: HM = 1/2.ED. c) Chứng minh rằng: BCDE là hình thang cân. d) Kẻ BD cắt CE, AE lần lượt tại G và F. Chứng minh rằng: G là trung điểm của FD. + Biết x, y là hai số nguyên dương thỏa mãn: 3×2 − 4xy + 2y2 = 3. Tính giá trị của biểu thức: M = x2022 + (y – 3)2022.