Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kỳ 2 Toán 10 năm 2023 - 2024 trường THPT Thăng Long - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi cuối học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT Thăng Long, thành phố Hồ Chí Minh. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kỳ 2 Toán 10 năm 2023 – 2024 trường THPT Thăng Long – TP HCM : + Trong câu lạc bộ khoa học của trường THPT Thăng Long, có 15 thành viên gồm 9 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong câu lạc bộ để tham gia vào một dự án nghiên cứu khoa học quốc tế. Tính xác suất để 4 học sinh được chọn có số học sinh nam bằng số học sinh nữ. + Biểu đồ sau cho biết giá cao nhất của cổ phiếu MWG (Thế Giới Di Động) qua các năm Dựa vào biểu đồ trên, hãy trả lời các câu hỏi sau (kết quả làm tròn đến hàng phần mười). a) Giá trị trung bình của giá cổ phiếu MWG là 125,1 nghìn đồng. b) Độ lệch chuẩn của giá cổ phiếu MWG là 22,3 nghìn đồng. c) Khoảng tứ phân vị của giá cổ phiếu MWG là 27,5 nghìn đồng. d) Trung vị của giá cổ phiếu MWG là 114,5 nghìn đồng. + Hình vẽ bên mô phỏng một khu vực được bao quanh bởi một hàng rào hình tròn tại tâm O có tọa độ (0;0) trong mặt phẳng tọa độ (đơn vị trên hai trục là mét). Tính theo đường chim bay, xác định khoảng cách ngắn nhất để một người ở vị trí có tọa độ (4;6) di chuyển được tới khu vực trong hàng rào hình tròn theo đơn vị mét (làm tròn kết quả đến hàng phần trăm). Biết rằng hàng rào hình tròn có bán kính 5m.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 10 năm 2017 - 2018 trường THPT B Thanh Liêm - Hà Nam
Đề thi học kỳ 2 Toán 10 năm 2017 – 2018 trường THPT B Thanh Liêm – Hà Nam được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 20 câu, chiếm 40% tổng số điểm, phần tự luận gồm 3 câu, chiếm 60% tổng số điểm, thí sinh làm bài trong 90 phút. Trích dẫn đề thi học kỳ 2 Toán 10 năm 2017 – 2018 : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-3;-1), B(-1;3), C(-2;2). a) Viết phương trình đường thẳng chứa cạnh BC của tam giác ABC. b) Viết phương trình đường cao AH (H ∈ BC) và xác định tọa độ điểm H. c) Viết phương trình đường tròn đi qua ba điểm ABC. [ads] + Trong mặt phẳng tọa độ Oxy, cho các điểm A(4;-3), B(4;1) và đường thẳng (d): x + 6y = 0. Viết phương trình đường tròn (C) đi qua A và B sao cho tiếp tuyến của đường tròn tại A và B cắt nhau tại một điểm thuộc (d). + Tam giác ABC có AB = 3, AC = 6 và góc A = 60. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Đề thi học kỳ 2 Toán 10 năm 2017 - 2018 trường THPT chuyên Hà Nội - Amsterdam
Đề thi học kỳ 2 Toán 10 năm học 2017 – 2018 trường THPT chuyên Hà Nội – Amsterdam được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 16 câu, chiếm 40% số điểm, phần tự luận gồm 4 câu, chiếm 60% số điểm, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 2 Toán 10 năm học 2017 – 2018 : + Trên mặt phẳng tọa độ Oxy, cho các điểm A(1;-1) và B(3;4). Giả sử (d) là một đường thẳng bất kỳ luôn đi qua điểm B. Khi khoảng cách từ A đến đường thẳng (d) đạt giá trị lớn nhất, đường thẳng (d) có phương trình nào sau đây? + Khi thống kê điểm môn Toán trong một kỳ thi của 200 em học sinh thì thấy có 36 bài được điểm bằng 5. Tần suất của giá trị xi = 5 là? [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường tròn (C1), (C2) có phương trình lần lượt là (x + 1)^2 + (y + 2)^2 = 9 và (x – 2)^2 + (y – 2)^2 = 4. a) Tìm tọa độ tâm, bán kính của hai đường tròn và chứng minh hai đường tròn tiếp xúc với nhau. b) Viết phương trình đường thẳng đi qua gốc tọa độ và tạo với đường thẳng nối tâm của hai đường tròn một góc bằng 45°. c) Cho elip (E) có phương trình 16x^2 + 49y^2 = 1. Viết phương trình đường tròn (C) có bán kính gấp đôi độ dài trục lớn của elip (E) và (C) tiếp xúc với hai đường tròn (C1), (C2).
Đề thi HK2 Toán 10 năm 2017 - 2018 trường THPT chuyên Lương Thế Vinh - Đồng Nai
Đề thi HK2 Toán 10 năm 2017 – 2018 trường THPT chuyên Lương Thế Vinh – Đồng Nai được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi, thí sinh làm bài trong thời gian 90 phút, đề nhằm đánh giá chất lượng học tập môn Toán của học sinh khối 10, đồng thời kết thúc chương trình Toán 10, đề thi có đáp án . Trích dẫn đề thi HK2 Toán 10 năm 2017 – 2018 : + Cho phương trình bậc hai: x^2 − 2(m + 1)x + 2m2 − m + 8 = 0, với m là tham số. Mệnh đề nào sau đây là mệnh đề đúng? A Phương trình luôn vô nghiệm với mọi m ∈ R. B Phương trình luôn có 2 nghiệm phân biệt với mọi m ∈ R. C Phương trình có duy nhất 1 nghiệm với mọi m ∈ R. D Tồn tại một giá trị m để phương trình có nghiệm kép. [ads] + Tam giác ABC có các góc A, B, C thỏa mãn (sinB + sinC)/(cosB + cosC) = sin A là: A tam giác vuông. B tam giác vuông cân. C tam giác đều. D tam giác cân . + Cho parabol (P): y = x^2 + 2x − 5 và đường thẳng d: y = 2mx + 2 − 3m. Tìm tất cả các giá trị m để (P) cắt d tại hai điểm phân biệt nằm phía bên phải trục tung.
Đề thi HK2 Toán 10 năm 2017 - 2018 trường THPT Trấn Biên - Đồng Nai
Đề thi HK2 Toán 10 năm 2017 – 2018 trường THPT Trấn Biên – Đồng Nai mã đề 001 gồm 8 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 27/04/2018, đề thi có đáp án . Trích dẫn đề thi HK2 Toán 10 năm 2017 – 2018 : + Bạn An kinh doanh hai mặt hàng handmade là vòng tay và vòng đeo cổ. Mỗi vòng tay làm trong 4 giờ, bán được 40 ngàn đồng. Mỗi vòng đeo cổ làm trong 6 giờ, bán được 80 ngàn đồng. Mỗi tuần bạn An bán được không quá 15 vòng tay và 4 vòng đeo cổ. Tính số giờ tối thiểu trong tuần An cần dùng để bán được ít nhất 400 ngàn đồng? [ads] + Chủ một rạp chiếu phim ước tính, nếu giá mỗi vé xem phim là x (ngàn đồng) thì lợi nhuận bán vé được tính theo công thức P(x) = -50x^2 + 3500x – 2500 (ngàn đồng). Hỏi muốn lợi nhuận bán vé tối thiểu là 50 triệu đồng thì giá tiền mỗi vé là bao nhiêu? + Trên đường tròn lượng giác, gọi M là điểm biểu diễn của cung lượng giác a = -15 độ. Trong các cung lượng giác biểu diễn bởi điểm M, hãy cho biết cung có số đo dương nhỏ nhất là bao nhiêu?