Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 cấp tỉnh năm 2022 - 2023 sở GDĐT Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 14 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi Toán 9 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Cho phương trình (m + 1)x3 + (3m − 1)x2 − x − 4m + 1 = 0 (với m là tham số). Tìm m để phương trình đã cho có 3 nghiệm phân biệt. + Cho 3 điểm phân biệt cố định A, B, C cùng nằm trên đường thẳng d (điểm B nằm giữa A và C), gọi I là trung điểm của đoạn thẳng BC. Đường tròn tâm O luôn đi qua hai điểm B và C (điểm O không thuộc d). Kẻ các tiếp tuyến AM,AN với đường tròn tâm O (M, N là các tiếp điểm). Đường thẳng MN cắt OA tại điểm H và cắt BC tại điểm K. 1. Chứng minh tứ giác OMNI nội tiếp và AH.OA = AN2. 2. Khi đường tròn tâm O thay đổi, chứng minh MN luôn đi qua điểm K cố định. 3. Tia AO cắt đường tròn tâm O tại hai điểm P, Q (điểm P nằm giữa A và O). Gọi D là trung điểm của đoạn thẳng HQ. Từ H kẻ đường thẳng vuông góc với MD và cắt đường thẳng MP tại E. Chứng minh P là trung điểm của ME. + Cho một bảng ô vuông kích thước 10 x 10 gồm 100 ô vuông đơn vị (cạnh bằng 1). 1. Điền vào mỗi ô vuông đơn vị một trong các số −1; 0; 1. Xét các tổng của tất cả các số đã điền trên mỗi hàng, mỗi cột và hai đường chéo của bảng đã cho. Hỏi các tổng đó có thể nhận bao nhiêu giá trị và chứng minh trong đó có hai tổng bằng nhau. 2. Điền vào mỗi ô vuông đơn vị một số nguyên dương không vượt quá 10 sao cho hai số ở hai ô chung cạnh hoặc chung đỉnh là hai số nguyên tố cùng nhau. Chứng minh trong bảng đã cho tồn tại một số được điền ít nhất 17 lần.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2024.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) có ba đường cao AD, BE, CF đồng quy tại H. Đường tròn đường kính AC cắt đoạn thẳng BH tại M. Trên đoạn thẳng HC lấy điểm N sao cho AM = AN. a) Chứng minh EB.EH = ED.EF. b) Chứng minh N thuộc đường tròn ngoại tiếp tam giác ABD. + Cho tam giác nhọn ABC (AB < AC) có hai đường cao AE, BD cắt nhau tại H. Đường trung trực của đoạn thẳng DH cắt AE tại M, cắt đường tròn ngoại tiếp tam giác BCD tại P và Q (P nằm giữa M và Q). a) Chứng minh MD là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD. b) Chứng minh APM + AQM = CBD. c) Đường thẳng AQ cắt đường tròn ngoại tiếp tam giác BCD tại F (F khác Q). Chứng minh APB = FPB. + Cho p là số nguyên tố. Tìm tất cả các số nguyên dương b sao cho nghiệm của phương trình bậc hai x2 – bx + bp = 0 là số nguyên.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Thái Nguyên : + Cho S là một tập hợp có 3 phần tử là ba số tự nhiên và thỏa mãn tính chất: Tổng của hai phần tử bất kỳ thuộc tập hợp S là một số chính phương. Hỏi ba phần tử của tập hợp S đều là các số tự nhiên lẻ có được không? Giải thích. + Cho tam giác ABC có ba góc nhọn (AB < BC < AC) nội tiếp đường tròn tâm O đường kính AD. Kẻ DE vuông góc với BC tại E. Gọi K là trung điểm của đoạn thẳng BC, M là trung điểm của đoạn thẳng AK. Đường thẳng qua điểm E và song song với đường thẳng AK cắt đường tròn tâm D bán kính DE tại điểm N (N khác E). Đường cao AH (H thuộc BC) của tam giác ABC cắt đường tròn tâm O đường kính AD tại điểm I (I khác A). a. Chứng minh rằng BCD = CBI và CH = BE. b. Dựng hình thang cân BMPC. Chứng minh rằng ba điểm P, E, N thẳng hàng. c. Chứng minh rằng bốn điểm B, N, C, M cùng thuộc một đường tròn.