Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức đóng vai trò quan trọng trong quá trình học tập của học sinh tại tỉnh này. Đây là cơ hội để các em thể hiện kiến thức, năng lực và xác định hướng đi tiếp theo trong sự nghiệp học tập của mình. Trong số các môn thi được chú trọng, môn Toán luôn được coi là bài kiểm tra khó khăn và quyết định sự đậu rớt của nhiều học sinh. Đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 - 2020 môn Toán sở GD&ĐT Lâm Đồng đã được tổ chức vào ngày .../06/2019. Trong đó, có một số câu hỏi rất thú vị và đòi hỏi sự tư duy logic, khả năng phán đoán và tính toán chính xác từ các thí sinh. Ví dụ, một câu hỏi đề cập đến việc tính số học sinh trong lớp 9A dựa trên thông tin về việc trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ. Câu hỏi khác liên quan đến định lý hình học, yêu cầu thí sinh chứng minh một tứ giác nội tiếp trong một tình huống cụ thể. Thông qua việc xem xét và giải quyết các bài tập trong đề thi Toán của kỳ tuyển sinh này, học sinh có cơ hội thực hành, rèn luyện và phát triển kỹ năng toán học của mình. Đồng thời, đề thi cũng giúp quý thầy cô, phụ huynh và những người quan tâm có cái nhìn rõ hơn về trình độ và sự chuẩn bị của học sinh trước kỳ thi quan trọng này. Hy vọng rằng, mỗi em học sinh sẽ tự tin và thành công trên con đường học tập của mình sau kỳ thi tuyển sinh vào lớp 10 THPT tại Lâm Đồng.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 lần 2 năm 2021 - 2022 trường Thái Thịnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán vào lớp 10 lần 2 năm học 2021 – 2022 trường THCS Thái Thịnh, quận Đống Đa, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2021 – 2022 trường Thái Thịnh – Hà Nội : + Một lon nước ngọt hình trụ có đường kính đáy bằng 6cm, chiều cao 10cm. Tính thể tích của lon nước. (Bỏ qua bề dày của lon nước). + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y 3x m 1 và parabol (P): 2 y x. a) Tìm tọa độ giao điểm của (d) và (P) khi m = 3. b) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm có hoành độ x1, x2 thỏa mãn 1 2 x 3x. + Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. 1) Chứng minh bốn điểm A, M, O, H cùng thuộc một đường tròn. 2) MN cắt OA tại điểm I. Chứng minh rằng AI.AO = AM2. 3) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử 3 điểm A, B, C cố định, đường tròn (O) đi động. Chứng minh ND//AC và đường thẳng MN luôn đi qua một điểm cố định.
Đề thi thử Toán vào lớp 10 năm 2021 - 2022 lần 3 trường Nguyễn Công Trứ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán vào lớp 10 năm học 2021 – 2022 lần 3 trường THCS Nguyễn Công Trứ, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 lần 3 trường Nguyễn Công Trứ – Hà Nội : + Một lon nước ngọt hình trụ có đường kính đáy là 5 (cm), độ dài trục là 12 (cm). Tính diện tích toàn phần của lon nước hình trụ đó? + Trong cùng mặt phẳng tọa độ Oxy, cho: Parabol (P): 𝑦𝑦 = 𝑥𝑥2 và đường thẳng (d): 𝑦𝑦 = (𝑚𝑚 − 1) 𝑥𝑥 + 𝑚𝑚2 − 2𝑚𝑚 + 3. a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của m. b) Giả sử (d) cắt (P) tại hai điểm phân biệt A, B. Tìm m để tam giác OAB cân tại O. Khi đó tính diện tích tam giác OAB với m vừa tìm được. + Cho tam giác ABC nhọn, nội tiếp (O). Gọi D và E lần lượt là các điểm chính giữa cung nhỏ AC và cung nhỏ AB. Đường thẳng BD và CE cắt nhau tại F. Đường thẳng DE cắt AB và AC lần lượt tại I và K. a) Chứng minh: Tam giác EBF cân tại E. b) Chứng minh: Tứ giác EBFI nội tiếp được; từ đó suy ra IF // AC. c) Tứ giác AIFK là hình gì? Tại sao? d) Tam giác ABC cần thêm điều kiện gì để tứ giác AEFD là hình thoi và có diện tích gấp 3 lần diện tích tứ giác AIFK.
Đề thi thử vào lớp 10 môn Toán năm 2021 - 2022 trường THCS Phù Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử vào lớp 10 môn Toán năm học 2021 – 2022 trường THCS Phù Linh, huyện Sóc Sơn, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Bảy ngày 22 tháng 05 năm 2021. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2021 – 2022 trường THCS Phù Linh – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho parabol (P): 2y = −x và đường thẳng (d): y = mx − m − 2 (m là tham số). a) Với m = −2 , tìm tọa độ giao điểm của đường thẳng (d) và parabol (P). b) Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm biệt có hoành độ x1, x2 thỏa mãn x1 − x2 = 20. + Cho tam giác ABC nhọn nội tiếp đường tròn (O; R). Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm H. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên AK. 1) Chứng minh tứ giác BFEC nội tiếp được đường tròn. 2) Chứng minh AB. AC = 2R.AD và MD // BK. 3) Giả sử BC là dây cung cố định của đường tròn (O; R) và A di động trên cung lớn BC. Tìm vị trí điểm A để diện tích tam giác AEH lớn nhất. + Cho hai số thực dương a, b thỏa mãn điều kiện a + b ≥ 3. Tìm giá trị lớn nhất của biểu thức a b M a b 2 2 1..
Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Nguyễn Công Trứ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán vào lớp 10 năm học 2021 – 2022 trường THCS Nguyễn Công Trứ – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Nguyễn Công Trứ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai trường A và B có tổng số 460 học sinh tham gia kỳ thi vào lớp 10 THPT; kết quả, cả hai trường có 403 học sinh thi đỗ. Riêng trường A số học sinh thi đỗ chiếm tỉ lệ 85%, riêng trường B số học sinh thi đỗ chiếm tỉ lệ 90%. Tính số học sinh tham gia kỳ thi vào lớp 10 THPT của mỗi trường? + Một tháp nước có bể chứa là một hình cầu, đường kính bên trong của bể chứa đo được là 6 (mét). Người ta dự tính lượng nước đựng đầy trong bể đủ cung cấp cho một khu dân cư trong 5 ngày. Biết khu dân cư đó có 1570 người. Hỏi người ta đã dự tính trung bình mỗi người dùng bao nhiêu lít nước trong một ngày? + Cho đường tròn (O), hai đường kính AB và CD vuông góc nhau. Gọi M là điểm chuyển động trên cung nhỏ AC. Gọi I là giao điểm của BM và CD. Tiếp tuyến tại M của (O) cắt tia DC tại K. a) Chứng minh tứ giác AMIO nội tiếp được. b) Chứng minh MIC = MDB và MKD = 2MBA. c) Tia phân giác MOK cắt BM tại N. Chứng minh CN vuông góc BM. d) Gọi E là giao điểm của DM và AB. Chứng minh diện tích tứ giác IEDB không đổi.