Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lần 3 lớp 12 môn Toán năm 2022 2023 trường THPT Nông Cống 1 Thanh Hóa

Nội dung Đề HSG lần 3 lớp 12 môn Toán năm 2022 2023 trường THPT Nông Cống 1 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi lần 3 môn Toán lớp 12 năm học 2022 – 2023 trường THPT Nông Cống 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG lần 3 Toán lớp 12 năm 2022 – 2023 trường THPT Nông Cống 1 – Thanh Hóa : + Việt và Nam chơi cờ. Trong một ván cờ, xác suất Việt thắng Nam là 0,3 và Nam thắng Việt là 0,4. Hai bạn dừng chơi khi có người thắng, người thua. Tính xác suất để hai bạn dừng chơi sau hai ván cờ. + Ngày mùng 03/03/2015 anh A vay ngân hàng 50 triêu đồng với lãi suất kép là 0,6% / tháng theo thể thức như sau: đúng ngày mùng 3 hàng tháng kể từ một tháng sau khi vay, ngân hàng sẽ tính số tiền nợ của anh bằng số tiền nợ tháng trước cộng với tiền lãi của số tiền nợ đó. Sau khi vay anh A trả nợ như sau: đúng ngày mùng 3 hàng tháng kể từ một tháng sau khi vay anh A đều đến trả ngân hàng 3 triệu đồng. Tính số tháng mà anh A trả được hết nợ ngân hàng, kể từ một tháng sau khi vay. Biết rằng lãi suất không đổi trong suốt quá trình vay. A. 15 tháng. B. 19 tháng. C. 16 tháng. D. 18 tháng. + Hai chiếc ly đựng chất lỏng giống hệt nhau, mỗi chiếc có phần chứa chất lỏng là một khối nón có chiều cao 2 dm (mô tả như hình vẽ). Ban đầu chiếc ly thứ nhất chứa đầy chất lỏng, chiếc ly thứ hai để rỗng. Người ta chuyển chất lỏng từ ly thứ nhất sang ly thứ hai sao cho độ cao của cột chất lỏng trong ly thứ nhất còn 1dm. Tính chiều cao h của cột chất lỏng trong ly thứ hai sau khi chuyển (độ cao của cột chất lỏng tính từ đỉnh của khối nón đến mặt chất lỏng – lượng chất lỏng coi như không hao hụt khi chuyển. Tính gần đúng h với sai số không quá 0,01dm). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Cà Mau
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Cà Mau Bản PDF Ngày 04 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Cà Mau tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Cà Mau; đề gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Cà Mau : + Trong mặt phẳng Oxy cho tam giác ABC có đỉnh A(1;2), đường trung tuyến và đường phân giác trong hạ từ đỉnh B lần lượt có phương trình d: 2x – 3y = 2, d1: 9x – 3y = 16. Tìm tọa độ đỉnh C của tam giác ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a. Biết SA = SB = SC = a. Đặt SD = x (0 < x < a√3). a) Tính số đo góc giữa đường thẳng SB và mặt phẳng (ABCD) khi x = a. b) Tính x theo a sao cho tích AC.SD lớn nhất. + Cho đa giác đều có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của (H). Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật nhưng không phải là hình vuông.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Phước
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Phước Bản PDF Ngày 15 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bình Phước; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Phước : + Cho tập T = {1; 2; 3; 4; 5}. Gọi H là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số đôi một khác nhau thuộc T. Chọn ngẫu nhiên một số thuộc H. Tính xác suất để số được chọn có tổng các chữ số bằng 10. + Cho hình vuông ABCD có A(-1;2). Gọi M, N lần lượt là trung điểm BC và CD. Gọi H là giao điểm của BN và AM. Viết phương trình đường tròn ngoại tiếp tam giác HDN biết phương trình đường thẳng BN: 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi H là trung điểm AB. Tính thể tích khối chóp S.ABCD và tan (SH;(SCD)).
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Kon Tum
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Kon Tum Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Kon Tum; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Kon Tum : + Một nhóm gồm 9 học sinh một lớp trong đó có ba bạn Việt, Nam và Hùng đi dự đại hội Đoàn trường, ban tổ chức sắp xếp ngẫu nhiên 9 học sinh này ngồi vào một dãy ghế được đánh số từ 1 đến 9. Tính xác suất để số ghế của bạn Hùng bằng trung bình cộng số ghế của hai bạn Việt và Nam. + Biết mặt phẳng (ABC) vuông góc với mặt phẳng (ABD). Chứng minh rằng cos A.cos B = cos C với A, B, C là ký hiệu ba góc tương ứng với các đỉnh A, B, C của tam giác ABC. + Cho hàm số f(x) = -x4 + 2mx2 – m2 – 1. Tìm m để đồ thị hàm số f(x) có ba điểm cực trị và ba điểm đó cùng gốc tọa độ O lập thành tứ giác nội tiếp đường tròn.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Lạng Sơn
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Lạng Sơn; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Một khách sạn có 50 phòng. Hiện tại mỗi phòng cho thuê với giá 400 nghìn đồng một ngày thì toàn bộ phòng được thuê hết. Biết rằng cứ mỗi lần tăng giá lên them 20 nghìn đồng thì có thêm 2 phòng trống. Hỏi giám đốc phải chọn giá phòng mới là bao nhiêu để số tiền thu được của khách sạn trong 1 ngày là lớn nhất. + Gọi S là tập hợp các số có 5 chữ số đôi một khác nhau abcde với a, b, c, d, e thuộc tập {1, 2, 3, …, 9}. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn là số chẵn và thỏa mãn a < b < c < d < e. + Cho hàm số bậc ba y = f(x) = ax3 + bx2 + 1/3x + c và đường thẳng y = g(x) có đồ thị như trong hình vẽ bên và AB = 5. Giải phương trình f(x) = g(x) + x2 + 2.