Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất

Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất Bản PDF Sytu xin gửi đến quý thầy cô và các em học sinh lớp 6 bộ tài liệu về chuyên đề bội chung và bội chung nhỏ nhất. Trên tài liệu này, chúng ta sẽ tìm hiểu về khái niệm bội chung, là bội của nhiều số, và bội chung nhỏ nhất, là số nhỏ nhất trong tập hợp các bội chung đó.

Đầu tiên, chúng ta sẽ tìm hiểu về bội chung. Bội chung của hai hoặc nhiều số là bội của tất cả các số đó. Chúng ta có thể kí hiệu tập hợp các bội chung của hai số a và b là BC(a, b). Để tìm bội chung của hai số a và b, ta cần viết tập hợp các bội của a và b, sau đó tìm phần tử chung của hai tập hợp đó.

Tiếp theo, chúng ta sẽ tìm hiểu về bội chung nhỏ nhất. Bội chung nhỏ nhất của hai hoặc nhiều số là số nhỏ nhất trong tập hợp các bội chung của các số đó. Để tìm BCNN của hai số a và b, chúng ta phải phân tích mỗi số ra thừa số nguyên tố, chọn ra các thừa số nguyên tố chung và riêng, sau đó lập tích các thừa số đã chọn với số mũ lớn nhất của nó để được BCNN.

Cuối cùng, chúng ta sẽ làm các bài tập trắc nghiệm với các dạng toán thường gặp như tìm bội chung, bội chung nhỏ nhất của hai hoặc nhiều số, và vận dụng BCNN để tìm mẫu chung của hai hoặc nhiều phân số.

Tài liệu này sẽ giúp các em nắm vững kiến thức về bội chung và bội chung nhỏ nhất, từ các khái niệm cơ bản đến những bài toán nâng cao. Đồng thời, tài liệu cũng cung cấp đáp án và hướng dẫn giải chi tiết, giúp các em tự tin khi học và ôn thi chương trình Toán lớp 6 phần Số học. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề ước và bội, số nguyên tố và hợp số, phân tích một số ra thừa số nguyên tố
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ước và bội, số nguyên tố và hợp số, phân tích một số ra thừa số nguyên tố, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Nhận biết được khái niệm ước, bội, số nguyên tố và hợp số. + Nắm được cách phân tích một số ra thừa số nguyên tố. Kĩ năng: + Phân tích được một số tự nhiên bất kì ra thừa số nguyên tố, biết dùng lũy thừa để viết gọn dạng phân tích. + Biết cách xác định tập hợp các ước, các bội của một số tự nhiên. + Nhận biết được một số hoặc một biểu thức là số nguyên tố hay hợp số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Bài toán về ước và bội. + Cách tìm bội của a (a khác 0): Lấy a nhân lần lượt với 0; 1; 2; 3; …. + Cách tìm ước của b (b > 1): Lấy b chia cho các số tự nhiên từ 1 đến b để xét xem b chia hết cho những số nào rồi kết luận. Dạng 2 : Số nguyên tố và hợp số. Dạng 3 : Phân tích một số ra thừa số nguyên tố.
Chuyên đề tính chất chia hết của một tổng, dấu hiệu chia hết cho 2, cho 3, cho 5, cho 9
Tài liệu gồm 19 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất chia hết của một tổng, dấu hiệu chia hết cho 2, cho 3, cho 5, cho 9, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Hiểu quan hệ chia hết, các tính chất chia hết của một tổng, một hiệu. + Nắm được các dấu hiệu chia hết cho 2, cho 3, cho 5 và cho 9. Kĩ năng: + Nhận biết được một biểu thức có chia hết cho một số mà không cần tính giá trị của biểu thức đó. + Sử dụng đúng các kí hiệu chia hết và không chia hết. + Vận dụng thành thạo các dấu hiệu chia hết cho 2, cho 3, cho 5 và cho 9 để xác định một số đã cho có chia hết cho 2, cho 3, cho 5 và cho 9 hay không. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xét tính chia hết hay không chia hết. + Sử dụng dấu hiệu chia hết cho 2, cho 5, cho 3 và cho 9. + Sử dụng tính chất chia hết của tổng, của hiệu. Dạng 2 : Lập các số thỏa mãn điều kiện chia hết từ các số cho trước. + Lập số chia hết cho 2, cần chọn chữ số ở hàng đơn vị là số chẵn (0; 2; 4; 6 hoặc 8). + Lập số chia hết cho 5, cần chọn chữ số ở hàng đơn vị là 0 hoặc 5. + Lập số chia hết cho 3, cần chọn các chữ số sao cho tổng của chúng chia hết cho 3. + Lập số chia hết cho 9, cần chọn các chữ số sao cho tổng của chúng chia hết cho 9. Dạng 3 : Tìm điều kiện để một số chia hết cho một số nào đó. Sử dụng các dấu hiệu chia hết cho 2, cho 3, cho 5, cho 9 và tính chất chia hết của một tổng. Dạng 4 : Chứng minh tính chất chia hết. Cần lưu ý: + Hai số tự nhiên liên tiếp. + Ba số tự nhiên liên tiếp. + Số chẵn. + Số lẻ. + Cấu tạo số.
Chuyên đề phép nhân và phép chia hai lũy thừa cùng cơ số
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép nhân và phép chia hai lũy thừa cùng cơ số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Hiểu định nghĩa lũy thừa, phân biệt được cơ số và số mũ. + Hiểu được quy tắc nhân và chia hai lũy thừa cùng cơ số. + Hiểu được khái niệm số chính phương. Kĩ năng: + Thực hiện được các phép tính lũy thừa. + Biết cách viết gọn một biểu thức dưới dạng lũy thừa. + So sánh được các lũy thừa. + Biết biểu diễn một số tự nhiên bất kì dưới dạng tổng các lũy thừa của 10. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Viêt gọn một biểu thức dưới dạng lũy thừa. Dạng 2 : Tính giá trị của biểu thức. Dạng 3 : Tìm cơ số hoặc số mũ của một lũy thừa. + Đưa về cùng cơ số. + Đưa về cùng số mũ. Dạng 4 : So sánh các số viết dưới dạng lũy thừa. Để so sánh các số viết dưới dạng lũy thừa, ta có thể làm theo một trong ba cách sau: + Cách 1. Tính cụ thể rồi so sánh. + Cách 2. Đưa về cùng cơ số là số tự nhiên, rồi so sánh hai số mũ: Nếu m > n thì a^m > a^n. + Cách 3. Đưa về cùng số mũ, rồi so sánh hai cơ số: Nếu a > b thì a^m > b^m. Dạng 5 : Tìm chữ số tận cùng của số có dạng lũy thừa. Chữ số tận cùng của n a chính là chữ số tận cùng của n x (với x là chữ số tận cùng của a). Các số có tận cùng là 0; 1; 5; 6 khi nâng lên lũy thừa bất kì (khác 0) cũng có chữ số tận cùng là 0; 1; 5; 6. Các số có tận cùng là 4; 9 khi nâng lên lũy thừa lẻ thì chữ số tận cùng không thay đổi, khi nâng lên lũy thừa chẵn thì có chữ số tận cùng lần lượt là 6; 1.
Chuyên đề các phép tính về số tự nhiên
Tài liệu gồm 26 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề các phép tính về số tự nhiên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Nhận biết được điều kiện để có phép trừ trong tập số tự nhiên và điều kiện để thực hiện được phép chia. + Biết các tính chất của phép cộng và phép nhân. + Nắm được quan hệ giữa các số trong các phép cộng, phép trừ, phép nhân, phép chia hết và phép chia có dư. Kĩ năng: + Xác định được vai trò của các số trong các phép tính, từ đó tìm được số chưa biết trong một phép tính. + Biết cách vận dụng các tính chất giao hoán, kết hợp, tính chất phân phối của phép nhân đối với phép cộng … vào tính nhẩm, tính nhanh một cách hợp lí. + Biết cách vận dụng kiến thức về các phép toán để giải các bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Thực hiện phép tính. Để thực hiện phép tính bằng cách hợp lí nhất (tính nhanh), ta cần đưa về tổng, hiệu, tích, thương của số tròn chục, tròn trăm, tròn nghìn … và áp dụng các tính chất: + Tính chất kết hợp của phép cộng. + Tính chất kết hợp của phép nhân. + Chia một tổng cho một số. Dạng 2 : Tìm x. Xác định vai trò của số đã biết và số chưa biết trong phép tính, sau đó áp dụng: + Phép cộng: Số hạng chưa biết = Tổng – Số hạng đã biết. + Phép trừ: Số trừ = Số bị trừ – Hiệu; Số bị trừ = Hiệu + Số trừ. + Phép nhân: Thừa số chưa biết = Tích : Thừa số đã biết. + Phép chia hết: Số chia = Số bị chia : Thương; Số bị chia = Số chia . Thương. Dạng 3 : Bài toán có lời văn. Dạng 4 : Toán về phép chia có dư. Trong phép chia có dư: + Số bị chia = Số chia x Thương + Số dư (0 < Số dư < Số chia). + Số chia = (Số bị chia – Số dư) : Thương. + Thương = (Số bị chia – Số dư) : Số chia. + Số dư = Số bị chia – Số chia x Thương. Dạng 5 : Tìm số chưa biết trong một phép tính. + Phép cộng và phép trừ: Tính lần lượt theo cột từ phải sang trái. Chú ý những trường hợp có “nhớ”. + Phép nhân: Thực hiện phép nhân từ phải sang trái, suy luận từng bước để tìm ra những số chưa biết. + Phép chia: Đặt tính và lần lượt thực hiện phép chia từ hàng lớn nhất.