Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chuyên đề Toán 10 lần 3 năm 2018 - 2019 trường Liễn Sơn - Vĩnh Phúc

Đề thi chuyên đề Toán 10 lần 3 năm 2018 – 2019 trường Liễn Sơn – Vĩnh Phúc mã đề 130 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 12 câu, chiểm 30% số điểm, phần tự luận gồm 07 câu, chiếm 70% số điểm, học sinh làm bài thi trong 90 phút, kỳ thi nhằm không ngừng củng cố, nâng cao các kiến thức Toán 10 mà học sinh đã được học trong giai đoạn học kỳ 1 và đầu học kỳ 2 của năm học 2018 – 2019, đề thi có đáp án trắc nghiệm. Trích dẫn đề thi chuyên đề Toán 10 lần 3 năm 2018 – 2019 trường Liễn Sơn – Vĩnh Phúc : + Cho hàm số y = -x^2 + 4x – 3, có đồ thị (P). Giả sử d là đường thẳng đi qua A(0;-3) có hệ số góc k. Xác định k sao cho đường thẳng d cắt (P) tại hai điểm phân biệt E, F sao cho ∆OEF vuông tại O (O là gốc tọa độ). [ads] + Gọi S là tập tất cả các giá trị của m để phương trình mx^2 – 2(m – 1)x + m – 3 = 0 có nghiệm duy nhất. Khi đó tổng tất cả các phần tử của S là? + Cho tam giác ABC, M là trung điểm BC, G là trọng tâm tam giác. Mệnh đề nào sau đây là mệnh đề đúng?

Nguồn: toanmath.com

Đọc Sách

Đề thi khảo sát chất lượng lớp 10 môn Toán năm học 2016 2017 trường THPT Thạch Thành 1 Thanh Hóa lần 4
Nội dung Đề thi khảo sát chất lượng lớp 10 môn Toán năm học 2016 2017 trường THPT Thạch Thành 1 Thanh Hóa lần 4 Bản PDF Đề thi khảo sát chất lượng Toán lớp 10 năm học 2016 – 2017 trường THPT Thạch Thành 1 – Thanh Hóa lần 4 gồm 7 bài tập tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Cho hàm số: y = x^2 – 4x + c a) Tìm c biết rằng đồ thị của hàm số là một Parabol đi qua điểm A(2;-1) b) Vẽ đồ thị của hàm số ứng với giá trị c tìm được + Cho tam giác đều ABC cạnh a (a > 0). MNPQ là hình chữ nhật nội tiếp tam giác ABC (như hình vẽ). Tính diện tích lớn nhất có thể đạt được của hình chữ nhật MNPQ theo a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là: x + 3y – 18 = 0, phương trình đường trung trực của đoạn BC là: 3x + 19y – 279 = 0, đỉnh C thuộc đường thẳng d: 2x – y + 5 = 0. Tìm tọa độ điểm A biết rằng góc BAC = 135 độ.