Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2018 2019 trường THPT Lý Thánh Tông Hà Nội

Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2018 2019 trường THPT Lý Thánh Tông Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi HK2 Toán lớp 10 năm 2018 – 2019 trường THPT Lý Thánh Tông – Hà Nội, đề thi được biên soạn theo dạng đề kết hợp giữa tự luận và trắc nghiệm khách quan, vừa kiểm tra được khả năng tư duy logic, trình bày bài giải của học sinh, đồng thời phù hợp với xu hướng thi trắc nghiệm Toán hiện nay. Đề thi có mã đề 001 gồm 3 trang, phần tự luận gồm 4 câu, chiếm 6 điểm, phần trắc nghiệm gồm 20 câu, chiếm 4 điểm, tổng thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Ma trận đề thi HK2 Toán lớp 10 năm 2018 – 2019 trường THPT Lý Thánh Tông – Hà Nội: Bất phương trình và hệ bất phương trình một ẩn: + Nhận biết: Điều kiện xác định của BPT có chứa mẫu, Giải bất phương trình đơn giản. + Thông hiểu: Giải BPT đơn giản có chứa căn thức, BPT có chứa căn thức, trị tuyệt đối. + Vận dụng: Giải bất phương trình bậc nhất một ẩn, hệ bất phương trình bậc nhất một ẩn. Dấu của nhị thức bậc nhất: + Nhận biết: Nhị thức bậc nhất. + Thông hiểu: Dấu của nhị thức, Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương của các nhị thức bậc nhất. + Vận dụng: Bảng dấu, tìm nhị thức đúng. [ads] Dấu của tam thức bậc hai: + Nhận biết: Điều kiện để hàm số là một tam thức bậc hai. + Thông hiểu: Dấu của tam thức, Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương. + Vận dụng: Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương, Tìm m để phương trình có nghiệm hoặc vô nghiệm, thỏa mãn điều kiện cho trước, tam thức luôn dương hoặc luôn âm (với delta ở dạng bậc hai). Cung và góc lượng giác: + Nhận biết: Đổi độ sang rađian và ngược lại, Chuyển độ sang rađian và ngược lại, Tìm độ dài cung trên đường tròn. + Thông hiểu: Tìm độ dài cung trên đường tròn. Giá trị lượng giác của một cung: + Nhận biết: Kiểm tra công thức đúng – sai, Kiểm tra công thức lượng giác cơ bản, Kiểm tra công thức GTLG của các cung có liên quan đặc biệt. + Thông hiểu: Xác định dấu của GTLG, Tính giá trị lượng giác còn lại. + Vận dụng: GTLN và GTNN của một biểu thức, Tìm giá trị lượng giác của góc α, Chứng minh đẳng thức. Công thức lượng giác: + Nhận biết: Kiểm tra công thức. + Thông hiểu: Tính giá trị của biểu thức lượng giác, Tính giá trị của biểu thức lượng giác. + Vận dụng: Rút gọn biểu thức, Chứng minh đẳng thức lượng giác. Các hệ thức lượng trong tam giác và giải tam giác: + Nhận biết: Mệnh đề đúng – sai (định lý sin, định lý côsin), Tính diện tích tam giác sử dụng công thức Hê-rông. + Thông hiểu: Tìm bán kính đường tròn nội tiếp (ngoại tiếp). + Vận dụng: Tính số đo góc, bài toán thực tế. Phương trình đường thẳng: + Nhận biết: Xác định vectơ chỉ phương, vectơ pháp tuyến, Xác định điểm thuộc đường thẳng, Viết phương trình đường thẳng biết đi qua 1 điểm, biết VTCP hoặc VTPT. + Thông hiểu: Tính khoảng cách từ 1 điểm đến 1 đường thẳng, Viết phương trình đường thẳng đi qua 2 điểm. + Vận dụng: Viết phương trình đường thẳng, Viết phương trình đường thẳng thỏa mãn điều kiện cho trước. Phương trình đường tròn: + Nhận biết: Xác định tọa độ tâm và bán kính đường tròn, Viết phương trình đường tròn biết tâm và bán kính. + Thông hiểu: Phương trình đường tròn đường kính AB. + Vận dụng: Điều kiện để một phương trình trở thành phương trình đường tròn, Viết phương trình đường tròn, Viết phương trình đường tròn thỏa mãn điều kiện cho trước. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Phan Đình Phùng - Hà Nội
Thứ Tư ngày 17 tháng 06 năm 2020, trường THPT Phan Đình Phùng, quận Ba Đình, thành phố Hà Nội tổ chức kì thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kì 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Phan Đình Phùng – Hà Nội gồm 04 mã đề: 652, 653, 654, 655; đề được biên soạn theo dạng trắc nghiệm kết hợp với tự luận, trong đó phần trắc nghiệm gồm 12 câu, chiếm 03 điểm, phần tự luận gồm 04 câu, chiếm 07 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Phan Đình Phùng – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có G là trọng tâm và tọa độ các đỉnh A(−1;1), B(1;7), C(3;-2). a) Viết phương trình đường tròn tâm G và tiếp xúc với cạnh AC. b) Tính góc giữa hai đường thẳng AB và AC. c) Cho điểm M(m;n) thay đổi thỏa mãn MG = 2 và số thực p thay đổi.Tìm giá trị nhỏ nhất của biểu thức E = √((m – p)^2 + (n + 1)^2). [ads] + Thống kê điểm thi của 30 em học sinh đứng đầu kì thi học sinh giỏi Toán (thang điểm là 20 ), kết quả được cho trong bảng sau đây. Mốt của bảng phân bố đã cho là? + Trong mặt phẳng tọa độ Oxy, cho điểm A(1;2), B(−2;3), C(−2;1). Điểm M(a;b) thuộc Oy sao cho: |MA + MB + MC| nhỏ nhất, khẳng định nào sau đây đúng?
Đề thi học kỳ 2 Toán 10 năm 2019 - 2020 trường THPT chuyên Hạ Long - Quảng Ninh
Ngày … tháng 06 năm 2020, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 10 năm 2019 – 2020 trường THPT chuyên Hạ Long – Quảng Ninh mã đề 102 gồm 45 câu trắc nghiệm chung cho tất cả các thí sinh, 5 câu trắc nghiệm riêng cho mỗi lớp: chuyên Toán và không chuyên Toán, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 10 năm 2019 – 2020 trường THPT chuyên Hạ Long – Quảng Ninh : + Khẳng định nào dưới đây là SAI? A. ∀m ∈ [0; 1], tồn tại duy nhất α ∈ [0; π] thỏa mãn sin α = m. B. ∀m ∈ [0; 1], tồn tại duy nhất α ∈ [0; π/2] thỏa mãn cos α = m. C. ∀m ∈ [−1; 1], tồn tại duy nhất α ∈ [0; π] thỏa mãn cos α = m. D. ∀m ∈ [−1; 1], tồn tại duy nhất α ∈ [−π/2; π/2] thỏa mãn sin α = m. [ads] + Tính chất nào dưới đây là ĐÚNG với mọi góc lượng giác α bất kỳ và mọi số nguyên k thỏa mãn các biểu thức xác định? A. sin(α + kπ) = sin α. B. cos(α + k2π) = cos α. C. cos(α + kπ) = cos α. D. −1 ≤ tan α ≤ 1. + Cho hai đường thẳng: 2x − y − 1 = 0 và x + 2y + 2 = 0. Khi nói về vị trí tương đối của chúng, khẳng định nào ĐÚNG? A. Cắt nhau nhưng không vuông góc. B. Trùng nhau. C. Song song. D. Vuông góc.
Đề thi học kì 2 Toán 10 năm học 2019 - 2020 trường THPT Yên Mỹ - Hưng Yên
Ngày … tháng 06 năm 2020, trường THPT Yên Mỹ, tỉnh Hưng Yên tổ chức kỳ thi kiểm tra chất lượng lớp 10 môn Toán giai đoạn cuối học kì 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Yên Mỹ – Hưng Yên mã đề 123 gồm tổng cộng 40 câu hỏi và bài toán, trong đó có 35 câu trắc nghiệm và 05 câu tự luận, thời gian làm bài thi là 90 phút. Trích dẫn đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Yên Mỹ – Hưng Yên : + Từ một miếng tôn hình dạng là nửa đường tròn bán kính 1m người ta cắt ra một hình chữ nhật. Hỏi có thể cắt được miếng tôn có diện tích lớn nhất là bao nhiêu? + Trong mặt phẳng Oxy, cho điểm M(4;1), đường thẳng d qua M cắt tia Ox, Oy lần lượt tại A(a;0) và B(0;b) sao cho tam giác AOB có diện tích nhỏ nhất. Giá trị của a − 4b bằng? [ads] + Trong đường tròn lượng giác cho hình vuông MNPQ nội tiếp vẽ theo chiều ngược với chiều quay của kim đồng hồ, biết số đo cung (OA;OM) = 45 + k.360 với k thuộc Z. Khi đó số đo cung (OA;OP) bằng? + Một đồng hồ treo tường, kim giờ dài 10,57cm và kim phút dài 13,34cm. Trong 30 phút mũi kim giờ vạch lên cung tròn có độ dài là? + Tìm m để bất phương trình mx^2 + 2(m – 1)x + 1 ≤ 0 có nghiệm?
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bình Hưng Hòa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bình Hưng Hòa, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bình Hưng Hòa – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A, B, C. Viết phương trình tham số và phương trình tổng quát đường cao AH của tam giác ABC. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A, B, C. Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Giải các bất phương trình sau bằng cách lập bảng xét dấu.