Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 năm học 2019 - 2020 sở GDĐT Đà Nẵng

Ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Đà Nẵng tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn Toán năm học 2019 – 2020. Đề thi học sinh giỏi Toán 12 năm học 2019 – 2020 sở GD&ĐT Đà Nẵng mã đề 102 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, học sinh làm bài bằng cách chọn và tô kín một ô tròn trên phiếu trả lời trắc nghiệm tương ứng với phương án trả lời đúng của mỗi câu. Trích dẫn đề thi học sinh giỏi Toán 12 năm học 2019 – 2020 sở GD&ĐT Đà Nẵng : + Trong không gian Oxyz, cho mặt phẳng (P): ax + by + cz + 7 = 0 qua điểm A(2;0;1), vuông góc với mặt phẳng (Q): 3x – y + z + 1 = 0 và tạo với mặt phẳng (R): x – y + 2z – 1 = 0 một góc 60°. Tổng a + b + c bằng? [ads] + Cho hình chóp S.ABCD có đường cao SA = 4a. Biết đáy ABCD là hình thang vuông tại A và B với AB = BC = 3a, AD = a. Gọi M là trung điểm của cạnh AB và (alpha) là mặt phẳng qua M vuông góc với AB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (alpha) là đa giác có diện tích bằng? + Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên abcdef có sáu chữ số đôi một khác nhau mà mỗi số đều thỏa mãn d + e + f – a – b – c = 1?

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GDĐT Yên Bái
giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Yên Bái; kỳ thi được diễn ra trong hai ngày 29 và 30 tháng 09 năm 2021. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Yên Bái : + Cho tam giác ABC (ABC < ACB) vuông tại A và nội tiếp đường tròn (w). Tiếp tuyến tại A của (w) cắt đường thẳng BC tại D, E là điểm đối xứng của A qua đường thẳng BC, X là hình chiếu vuông góc của A lên BE, Y là trung điểm của AX, đường thẳng BY cắt đường tròn (w) tại điểm thứ hai là Z. Chứng minh BD là tiếp tuyến của đường tròn ngoại tiếp tam giác ADZ. + Một lớp học có 17 học sinh nam và 20 học sinh nữ. Hỏi có tất cả bao nhiêu cách xếp 37 học sinh đó thành một hàng dọc sao cho xuất hiện đúng một cặp nam – nữ mà học sinh nam đứng trước học sinh nữ? + Một dãy phòng có 19 phòng. Ban đầu mỗi phòng có một người. Sau đó cứ mỗi ngày có hai người nào đó được chuyển sang hai phòng bên cạnh nhưng theo hai chiều ngược nhau. Hỏi sau một số ngày có hay không trường hợp mà a) Không có ai ở phòng thứ tự chẵn. b) Có 10 người ở phòng cuối.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La; kỳ thi được diễn ra trong hai ngày 18 và 19 tháng 09 năm 2021. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La : + Cho tam giác nhọn ABC không cân nội tiếp đường tròn (O), có đường cao AH và tâm đường tròn nội tiếp là I. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi M là điểm đối xứng với A qua tâm O. Đường thẳng MA’ cắt các đường thẳng AH, BC theo thứ tự tại N và K. a) Chứng minh tứ giác NHIK nội tiếp đường tròn. b) Đường thẳng A’I cắt lại đường tròn (O) tại điểm thứ hai D, hai đường thẳng AD và BC cắt nhau tại điểm S. Chứng minh rằng nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. + Chứng minh rằng nếu số tự nhiên m có dạng 4k + 1 với k > 0 mà biểu diễn được không ít hơn hai cách dưới dạng tổng hai số chính phương thì m là hợp số. + Với số nguyên dương N cho trước, trên bảng có viết tất cả các ước nguyên dương của N. Hai bạn An và Bình chơi một trò chơi với luật như sau: An đi đầu tiên và xóa số N, ở mỗi lượt tiếp theo, các bạn sẽ xóa số là ước hoặc bội của số mà người kia xóa ở lượt trước đó. Ai đến lượt đi của mình mà không thực hiện được nữa thì thua. a) Với N = 2022, chứng minh rằng Bình có cách chơi để thắng. b) Tìm số N nhỏ nhất và N > 2022 sao cho An có cách chơi thắng.
Đề chọn học sinh giỏi Toán 12 chuyên năm 2021 - 2022 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 chương trình THPT chuyên năm học 2021 – 2022 sở GD&ĐT Vĩnh Phúc.
Đề chọn đội tuyển tỉnh môn Toán năm 2021 - 2022 trường chuyên Lê Quý Đôn - Khánh Hòa
Đề chọn đội tuyển tỉnh môn Toán năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 05 tháng 10 năm 2021.