Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo cuối kỳ 1 Toán 9 năm 2022 - 2023 trường THCS Yên Thế - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường THCS Yên Thế, quận Bình Thạnh, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức 100% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề tham khảo cuối kỳ 1 Toán 9 năm 2022 – 2023 trường THCS Yên Thế – TP HCM : + Điểm hạ cánh của một máy bay trực thăng ở giữa hai người quan sát tại các vị trí A và B. Biết máy bay cách vị trí B là 250m, góc nhìn thấy máy bay tạo với mặt đất tại vị trí A là 400 và tại vị trí B là 300. Hãy tìm khoảng cách giữa máy bay và vị trí A? (Làm tròn đến mét). + Chim cắt là loài chim lớn, có bản tính hung dữ, đặc điểm nổi bậc nhất của chúng là đôi mắt rực sáng, bộ móng vuốt và chiếc mỏ sắc như dao nhọn, chúng có khả năng lao nhanh như tên bắn và là nỗi khiếp đảm của không ít các loài chim trời, rắn và những loài thú nhỏ như chuột, thỏ, sóc. a) Từ vị trí cao 16m so với mặt đất, đường bay lên của chim cắt được cho bởi công thức: y = 30x + 16 (trong đó y là độ cao so với mặt đất, x là thời gian tính bằng giây, x > 0). Hỏi nếu nó muốn bay lên để đậu trên một núi đá cao 256m so với mặt đất thì tốn bao nhiêu giây? b) Từ vị trí cao 256m so với mặt đất hãy tìm độ cao khi nó bay xuống sau 3 giây. Biết đường bay xuống của nó được cho bởi công thức: y = 40x + 256. + Định luật Kepler về sự chuyển động của các hành tinh trong Hệ mặt trời xác định mối quan hệ giữa chu kỳ quay quanh Mặt Trời của một hành tinh và khoảng cách giữa hành tinh đó với Mặt Trời. Định luật được cho bởi công thức 3 d t 6 trong đó d là khoảng cách giữa hành tinh quay xung quanh Mặt Trời và Mặt Trời (đơn vị: triệu dặm, 1 dặm = 1609 mét), t là thời gian hành tinh quay quanh Mặt Trời đúng một vòng (đơn vị: ngày của Trái Đất). Hãy tính thời gian Trái Đất quay quanh Mặt Trời biết khoảng cách giữa Trái Đất và Mặt Trời là 149,3 triệu km (làm tròn thời gian đến ngày).

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 9 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 9 : Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’). Một đường thẳng qua O cắt đường thẳng (d) ở M và (d’) ở P. Từ O kẻ tia Ox vuông góc với MP và cắt (d’) ở N. a) Chứng minh OM = OP và tam giác NMP cân b) Chứng minh MN là tiếp tuyến của (O) c) Chứng minh AM.BN = R^2 d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất Giải : a) Xét ΔAMO và ΔBPO có: góc MAO = PBO = 90 độ (Tính chất tiếp tuyến) OA = OB (bán kính) Góc AOM = BOP (2 góc đối đỉnh) Do đó: ΔAMO = ΔBPO (g.c.g), suy ra OM = OP (2 cạnh tương ứng) Xét ΔMNP có: OM = OP (chứng minh trên) NO ⊥ MP (theo giả thiết) Suy ra ON là đường trung tuyến, đồng thời là đường cao của tam giác MNP Vậy tam giác MNP cân tại N Gọi I là hình chiếu của điểm O trên cạnh MN vuông góc OI MN tại I [ads] b) Vì tam giác MNP cân tại N nên góc OMI = OPB (2 góc đáy) Xét tam giác OMI và tam giác OPB có: Góc OIM = OBP = 90 OM = OP (chứng minh trên) Góc OMI OPB (chứng minh trên) Do đó: ΔOMI = ΔOPB (cạnh huyền – góc nhọn) Suy ra OI = OB = R Vì OI ⊥ MN tại I và OI = OB = R nên MN là tiếp tuyến của (O;R) tại I c) Xét ΔAMO và ΔBON có: góc AMO = BON (cùng phụ với góc AOM) Góc MAO = OBN = 90 (Tính chất tiếp tuyến) Do đó: ΔAMO đồng dạng với ΔBON (g.g) Suy ra AM/BO = AO/BN Suy ra AM.BN = AO.BO = R^2 ( Vì OA=OB=R) d) Ta có: MA ⊥ AB (Tính chất tiếp tuyến) NB ⊥ AB (Tính chất tiếp tuyến) Do đó: MA // NB nên AMNB là hình thang vuông Vì AMNB là hình thang vuông nên ta có: S AMNB = (AM + NB).AB/2 Mặt khác: AM = MI (Tính chất 2 tiếp tuyến cắt nhau) BN = NI (Tính chất 2 tiếp tuyến cắt nhau) Do đó: S AMNB = (MI + NI).AB/2 = MN.AB/2 Mà AB = 2R cố định nên AMNB S nhỏ nhất khi MN nhỏ nhất ⇔ MN // AB hay AM = R. Khi đó S AMNB = 2R^2 Vậy để diện tích tứ giác AMNB nhỏ nhất thì MN//AB và AM = R
Đề kiểm tra HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề kiểm tra HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 12 tháng 12 năm 2017.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Đống Đa - Hà Nội
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Đống Đa – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 15 tháng 12 năm 2017.