Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo cuối kỳ 1 Toán 9 năm 2022 - 2023 trường THCS Yên Thế - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường THCS Yên Thế, quận Bình Thạnh, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức 100% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề tham khảo cuối kỳ 1 Toán 9 năm 2022 – 2023 trường THCS Yên Thế – TP HCM : + Điểm hạ cánh của một máy bay trực thăng ở giữa hai người quan sát tại các vị trí A và B. Biết máy bay cách vị trí B là 250m, góc nhìn thấy máy bay tạo với mặt đất tại vị trí A là 400 và tại vị trí B là 300. Hãy tìm khoảng cách giữa máy bay và vị trí A? (Làm tròn đến mét). + Chim cắt là loài chim lớn, có bản tính hung dữ, đặc điểm nổi bậc nhất của chúng là đôi mắt rực sáng, bộ móng vuốt và chiếc mỏ sắc như dao nhọn, chúng có khả năng lao nhanh như tên bắn và là nỗi khiếp đảm của không ít các loài chim trời, rắn và những loài thú nhỏ như chuột, thỏ, sóc. a) Từ vị trí cao 16m so với mặt đất, đường bay lên của chim cắt được cho bởi công thức: y = 30x + 16 (trong đó y là độ cao so với mặt đất, x là thời gian tính bằng giây, x > 0). Hỏi nếu nó muốn bay lên để đậu trên một núi đá cao 256m so với mặt đất thì tốn bao nhiêu giây? b) Từ vị trí cao 256m so với mặt đất hãy tìm độ cao khi nó bay xuống sau 3 giây. Biết đường bay xuống của nó được cho bởi công thức: y = 40x + 256. + Định luật Kepler về sự chuyển động của các hành tinh trong Hệ mặt trời xác định mối quan hệ giữa chu kỳ quay quanh Mặt Trời của một hành tinh và khoảng cách giữa hành tinh đó với Mặt Trời. Định luật được cho bởi công thức 3 d t 6 trong đó d là khoảng cách giữa hành tinh quay xung quanh Mặt Trời và Mặt Trời (đơn vị: triệu dặm, 1 dặm = 1609 mét), t là thời gian hành tinh quay quanh Mặt Trời đúng một vòng (đơn vị: ngày của Trái Đất). Hãy tính thời gian Trái Đất quay quanh Mặt Trời biết khoảng cách giữa Trái Đất và Mặt Trời là 149,3 triệu km (làm tròn thời gian đến ngày).

Nguồn: toanmath.com

Đọc Sách

Đề cuối học kỳ 1 Toán 9 năm 2022 - 2023 trường THCS Kim Giang - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường THCS Kim Giang, quận Thanh Xuân, thành phố Hà Nội.
Đề cuối học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Thường Tín - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thường Tín, thành phố Hà Nội. Trích dẫn Đề cuối học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Thường Tín – Hà Nội : + Cho hàm số y = (m2 + 1)x + 2m – 1 (*) có đồ thị là đường thẳng dm. a) Tìm m biết đường thẳng dm đi qua điểm (0;-3). b) Với giá trị m tìm được ở phần a), hãy vẽ đồ thị hàm số (*). c) Tìm m biết đường thẳng dm song song với đường thẳng y = 5x + 1. + Một cột đèn có bóng trên mặt đất dài 8,2m. Các tia nắng mặt trời tạo với mặt đất một góc 40°. Tính chiều cao của cột đèn? (kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn (O;R) đường kính AB. Kẻ tiếp tuyến Ax, lấy điểm P trên Ax (AP > R). Từ P kẻ tiếp tuyến PM của (O;R) (M là tiếp điểm). a) Chứng minh bốn điểm A, P, M, O cùng thuộc một đường tròn. b) Chứng minh OP vuông góc AM và BM // OP. c) Đường thẳng vuông góc với AB tại O cắt tia BM tại N, AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng.
Đề kiểm tra học kì 1 Toán 9 năm 2022 - 2023 phòng GDĐT Gia Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kì 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 90 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra học kì 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Gia Lâm – Hà Nội : + Cho đường thẳng d y x 1 : 2 và d y x 2 : 2 4. a) Vẽ hai đường thẳng d1, d2 trên cùng một mặt phẳng tọa độ; b) Tìm toạ độ giao điểm A của hai đường thẳng trên; c) Gọi B là giao điểm của đường thẳng d1 với trục tung, C là giao điểm của đường thẳng d2 với trục tung. Tính diện tích ABC (đơn vị trên các trục tọa độ là centimet). + Hãy tính chiều cao của tháp Eiffel mà không cần lên tận đỉnh tháp khi biết góc tạo bởi tia nắng mặt trời với mặt đất là 62o và bóng của tháp trên mặt đất là 172 m (làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho điểm N thuộc nửa đường tròn (O; R) đường kính AB. Trên nửa mặt phẳng bờ AB chứa điểm N, kẻ các tia tiếp tuyến Ax, By với nửa đường tròn. Tiếp tuyến tại N của nửa đường tròn cắt tia Ax tại C. a) Chứng minh rằng 4 điểm A, C, O, N cùng thuộc một đường tròn. Chỉ rõ tâm đường đó; b) Tiếp tuyến tại N cắt tia By tại D. Chứng minh AC + BD = CD và ∆COD vuông tại O; c) Gọi F là giao điểm của AD và BC, K là giao điểm của NF và AB. Chứng minh rằng F là trung điểm NK.
Đề kiểm tra học kì 1 Toán 9 năm 2022 - 2023 phòng GDĐT Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kì 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 23 tháng 12 năm 2022. Trích dẫn Đề kiểm tra học kì 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Long Biên – Hà Nội : + Vẽ đồ thị hàm số (d): y = x + 1 trên mặt phẳng tọa độ Oxy. + Cho hàm số bậc nhất y = (4 – 2m)x + 2022 với m là tham số và m khác 2. a) Với những giá trị nào của m thì hàm số nghịch biến? b) Tìm giá trị của m biết đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 2. + Cho đường tròn (O;R), đường kính AB. Lấy điểm C thuộc đường tròn (O;R) sao cho AC > BC. Kẻ đường cao CH của tam giác ABC (H thuộc AB), kéo dài CH cắt (O;R) tại điểm D (D khác C). Tiếp tuyến tại điểm A và tiếp tuyến tại điểm C của đường tròn (O;R) cắt nhau tại điểm M. Gọi I là giao điểm của OM và AC. a) Chứng minh bốn điểm M, A, O, C cùng thuộc đường tròn đường kính OM. b) Hai đường thẳng MC và AB cắt nhau tại F. Chứng minh BC = 2.IO và DF là tiếp tuyến của (O;R). c) Chứng minh AF.BH = BF.AH.