Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Gang Thép - Thái Nguyên

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Gang Thép, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Gang Thép – Thái Nguyên : + Trên một vùng biển được xem như bằng phẳng và không có chướng ngại vật, vào lúc 6 giờ có một tàu cá đi thẳng qua tọa độ X theo hướng Từ Nam đến Bắc với vận tốc không đổi. Đến 7 giờ cùng ngày một tàu du lịch cũng đi thẳng qua tọa độ X theo hướng từ Đông sang Tây với vận tốc lớn hơn vận tốc tàu cá 12 km/h. Đến 8 giờ cùng ngày, khoảng cách giữa hai tàu là 60 km. Tính vận tốc của mỗi tàu. + Cho hai đường tròn (O1, R1) và (O2, R2) tiếp xúc ngoài tại E. Vẽ tiếp tuyến chung ngoài MN của hai đường tròn (M∈(O1); N∈(O2)), vẽ tiếp tuyến chung trong của hai đường tròn tại E cắt MN tại A. a) Chứng minh: tứ giác MAEO1 và tứ giác NAEO2 là các tứ giác nội tiếp. b) Tính MN theo R1, R2. [ads] + Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E. H là giao điểm của BD và CE. K là giao điểm của DE và AH. F là giao điểm của AH và BC. M là trung điểm của AH. Chứng minh rằng: MA2 = MK.MF.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Ninh Thuận : + Cho Parabol (P): y = -x2 và đường thẳng (d): y = x – 2. a) Vẽ (P) và (d) trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán. + Gia đình An dự định đi du lịch tại Nha Trang và Huế trong 7 ngày. Biết rằng chi phí trung bình mỗi ngày tại Nha Trang là 2 triệu đồng, còn tại Huế là 3 triệu đồng. Tìm số ngày nghỉ dự định của gia đình An tại mỗi địa điểm, biết số tiền mà họ phải chi cho toàn bộ chuyến đi là 18 triệu đồng. + Cho đường tròn (O) tâm O bán kính R và điểm A nằm ngoài đường tròn. Các tiếp tuyến với đường tròn kẻ từ A tiếp xúc với đường tròn tại B, C. Gọi M là điểm thuộc cung lớn BC. Từ M kẻ MH vuông góc BC, MK vuông góc AC, MI vuông góc AB. a) Chứng minh tứ giác MIBH nội tiếp. b) Giả sử AB = 2R. Tính diện tích tứ giác ABOC. c) Chứng minh MI.MK = MH2.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hải Dương : + Tìm tất cả các số nguyên tố p lẻ sao cho 2p4 – p2 + 16 là số chính phương. + Tìm nghiệm nguyên của phương trình 6×2 + 7xy + 2y2 + x + y – 2 = 0. + Cho tam giác đều ABC nội tiếp đường tròn (O), điểm E thuộc cung nhỏ AB của đường tròn (O) (E khác A, E khác B). Đường thẳng AE cắt các tiếp tuyến tại B, C của đường tròn (O) lần lượt tại M, N. a) Chứng minh rằng MB.NC = AB2. b) Gọi F là giao điểm của MC và BN, H là trung điểm BC. Chứng minh rằng ba điểm E, F, H thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán A1: Nguyễn Nhất Huy – Trần Nguyễn Đức Nhật – Phan Anh Quân – Trịnh Huy Vũ). Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN – Hà Nội : + Giả sử n là số nguyên sao cho 3n3 – 1011 chia hết cho 1008. Chứng minh rằng n – 1 chia hết cho 48. + Cho hai đường tròn (O) và (O’) cố định cắt nhau tại A và B sao cho O nằm ngoài (O’) và O’ nằm ngoài (O). Trên đường tròn (O) lấy điểm P di chuyển sao cho P nằm trong đường tròn (O’). Đường thẳng AP cắt (O’) tại C khác A. 1) Chứng minh rằng hai tam giác OBP và O’BC đồng dạng. 2) Gọi Q là giao điểm của hai đường thẳng OP và O’C. Chứng minh rằng QBC + ABP = 90°. 3) Lấy điểm D thuộc (O) sao cho AD vuông góc O’C. Chứng minh rằng trung điểm của đoạn thẳng DQ luôn nằm trên một đường tròn cố định khi P thay đổi. + Giả sử A là tập hợp con của tập hợp gồm 30 số tự nhiên đầu tiên {0, 1, 2, 3, …, 29} sao cho với k nguyên bất kỳ, a, b thuộc A bất kỳ (có thể a = b) thì a + b + 30k không là tích của hai số nguyên liên tiếp. Chứng minh rằng số phần tử của tập hợp A nhỏ hơn hoặc bằng 10.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Quốc học Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 04/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Quốc học Huế : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AD và trực tâm H. Gọi E là điểm trên (O) sao cho hai dây AE và BC song song với nhau. Đường thẳng EH cắt (O) tại điểm thứ hai là F và cắt đường trung trực của BC tại M. a) Chứng minh M là trung điểm của EH và AMOF là tứ giác nội tiếp. b) Chứng minh OFA + ODF = 180. c) Gọi K là điểm đối xứng với A qua O. Tiếp tuyến của (O) tại A cắt đường thẳng FK tại T. Chứng minh hai đường thẳng TH và BC song song với nhau. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 và parabol (P): y = x2. Chứng minh với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt A và B nằm khác phía đối với trục tung. Gọi C và D lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tìm tất cả các giá trị của m để hai tam giác AOC và BOD có diện tích bằng nhau. + Trong một đường tròn (O) có bán kính bằng 46 cm, cho 2023 điểm bất kỳ. Chứng minh tồn tại vô số hình tròn có bán kính bằng 1 cm nằm trong đường tròn (O) và không chứa bất kỳ điểm nào trong 2023 điểm đã cho.