Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh

Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán lớp 7 năm 2022 – 2023 Đề học sinh giỏi môn Toán lớp 7 năm 2022 – 2023 Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh. Đề thi sẽ được tổ chức vào ngày 22 tháng 02 năm 2023, với thời gian làm bài 120 phút, đề thi hình thức 100% tự luận. Trong đề thi sẽ có nhiều dạng bài tập khác nhau, đi từ dễ đến khó, để đánh giá năng lực và kiến thức của các em học sinh. Một trong số đó là bài toán về tam giác ABC và các điểm I, D, E, H, với nhiều yếu tố cần chứng minh và suy luận logic. Bài toán còn yêu cầu thí sinh chọn một trong hai câu hỏi phụ, với bài toán cộng trừ. Đề thi được thiết kế để thách thức tư duy và kỹ năng giải quyết vấn đề của các học sinh, giúp họ rèn luyện khả năng tự ôn tập và phát triển bản thân. Hy vọng rằng đề thi sẽ mang lại cơ hội cho các em thể hiện tài năng và đạt kết quả cao trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2018 - 2019 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương : + Cho tam giác ABC có ba góc nhọn, điểm M là trung điểm của BC. Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB và AE = AB. Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC và AD = AC. a) Chứng minh: BD = CE. b) Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh: BAC ACN 180. c) Gọi I là giao điểm của DE và AM. Tính tỉ số AD + IE DI + AE. + Cho a, b, c, d là các số tự nhiên khác 0. Chứng minh rằng: S = a b c d a b c a b d b c d a c d có giá trị không phải là số tự nhiên. + Cho hàm số f(x) xác định với mọi x R. Biết rằng với mọi x khác 0 ta đều có.
Đề giao lưu HSG Toán 7 năm 2018 - 2019 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Ba lớp cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5; 6; 7 nhưng sau đó chia theo tỉ lệ 4; 5; 6 nên có một lớp nhận nhiều hơn dự định 4 gói tăm. Tính tổng số gói tăm mà ba lớp đã mua. + Cho hàm số. Tìm các giá trị của a biết rằng đồ thị hàm số đi qua điểm M. + Cho ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). Tia phân giác của các góc HAC và HAB lần lượt cắt BC ở D và E. Tính độ dài đoạn thẳng DE biết AB cm AC cm.
Đề học sinh giỏi huyện Toán 7 năm 2018 - 2019 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2018 – 2019 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 7 cấp trường năm 2018 - 2019 trường THCS Sông Trí - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát đội tuyển học sinh giỏi môn Toán 7 cấp trường năm học 2018 – 2019 trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán 7 cấp trường năm 2018 – 2019 trường THCS Sông Trí – Hà Tĩnh : + Cho tam giác ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng bờ là đường thẳng AB chứa điểm C vẽ đoạn thẳng AE ⊥ AB sao cho AE = AB. Trên nửa mặt phẳng bờ là đường thẳng AC chứa điểm B vẽ đoạn thẳng AD ⊥ AC sao cho AD = AC. a) Chứng minh BD = CE b) Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh ADE CAN c) Cọi K là giao điểm của DE và AM. Chứng minh 2 2 2 2 AD KE 1. + Trong cuộc thi tìm kiếm tài năng toán học gồm có 20 câu hỏi. Mỗi câu trả lời đúng được 10 điểm, câu sai bị trừ đi 3 điểm. Một bạn học sinh đạt 148 điểm. Hỏi bạn đó trả lời đúng bao nhiêu câu hỏi. + Tính chu vi của một tam giác cân biết độ dài hai cạnh là 2,4 cm và 5 cm.