Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2021 - 2022 sở GDĐT Thanh Hóa

Thứ Bảy ngày 25 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán khối THPT năm học 2021 – 2022. Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2021 – 2022 sở GD&ĐT Thanh Hóa mã đề 106 được biên soạn theo hình thức 100% trắc nghiệm, đề gồm 07 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2021 – 2022 sở GD&ĐT Thanh Hóa : + Cho hình chóp S ABC có đáy ABC là tam giác đều SA ABC. Gọi P là mặt phẳng qua B và vuông góc với đường thẳng SC. Thiết diện do mp P cắt hình chóp S ABC là: A. Tam giác đều. B. Tam giác cân. C. Tam giác vuông D. Hình thang vuông. + Để chuẩn bị cổ vũ cho đội tuyển Việt Nam tham dự giải AFF Suzuki Cup 2020, một hội cổ động viên dự định sơn và trang trí cho 1000 chiếc nón lá như sau: Độ dài đường sinh của chiếc nón lá là 40cm, theo độ dài đường sinh kể từ đỉnh nón cứ 8cm thì sơn màu đỏ, màu vàng xen kẽ nhau, sau đó dán 20 ngôi sao màu vàng cho mỗi chiếc nón (như hình minh họa bên). Biết rằng đường kính của đường tròn đáy nón là 40cm , mỗi ngôi sao màu vàng và công dán giá 400 đồng, tiền sơn và công sơn màu vàng giá 30.000 đồng/m2 và tiền sơn và công sơn màu đỏ giá 40.000 đồng/m2. Hỏi giá thành để sơn và trang trí cho 1000 chiếc nón lá như trên là bao nhiêu? + Một tỉnh A đưa ra nghị quyết về giảm biên chế cán bộ công chức, viên chức hưởng lương từ ngân sách nhà nước trong giai đoạn 2015 2021 (6 năm) là 9,9% so với số lượng hiện có năm 2015 theo phương thức “ra 2 vào 1”(tức là khi giảm đối tượng hưởng lương từ ngân sách nhà nước 2 người thì được tuyển mới 1 người). Giả sử tỷ lệ giảm và tuyển dụng mỗi năm so với năm trước đó là như nhau. Tính tỷ lệ tuyển dụng mới hàng năm (làm tròn đến 0,01%). + Cho khối trụ T có hai đáy là hai hình tròn O và O. Xét hình chữ nhật ABCD có hai điểm A B cùng thuộc đường tròn O và hai điểm C D cùng thuộc đường tròn O sao cho AB a BC a 3 2 đồng thời mặt phẳng ABCD tạo với mặt đáy của hình trụ một góc 60. Thể tích khối trụ T bằng? + Cho hai hàm số bậc ba y f x và y g x f mx n (trong đó m n) có đồ thị như hình vẽ bên. Biết rằng điểm cực tiểu của hàm số y g x lớn hơn điểm cực đại của hàm số y g x là 5 đơn vị và g 0 1. Khi đó giá trị biểu thức P m n 3 2 là?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 - 2019 sở GDĐT Lào Cai
Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai được biên soạn và tổ chức thi ngày 22 tháng 01 năm 2019 nhằm tìm kiếm và tuyên dương các em học sinh khối THPT giỏi môn Toán đang học tập tại các trường THPT tại tỉnh Lào Cai, đề gồm 01 trang với 05 bài toán tự luận, học sinh làm bài thi trong vòng 180 phút. Trích dẫn đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang vuông ABCD vuông tại A và D, có CD = 2AD = 2AB. Gọi M (2;4) là điểm thuộc cạnh AB sao cho AB = 3AM . Điểm N thuộc cạnh BC sao cho tam giác DMN cân tại M. Phương trình đường thẳng MN là 2x + y – 8 = 0. Tìm tọa độ các đỉnh của hình thang ABCD biết D thuộc đường thẳng d: x + y = 0 và điểm A thuộc đường thẳng d’: 3x + y – 8 = 0. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm M thỏa mãn AD = 3MD. Trên cạnh CD lấy các điểm I, N sao cho góc ABM = MBI và MN vuông góc với BI. Biết góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60°. Tính thể tích của khối chóp S.AMCB và tính khoảng cách từ N đến mặt phẳng (SBC). + Cho hàm số y = f(x) có đạo hàm f'(x) = (x – 3)^2018.(e^2x – e^x + 1/3).(x^2 – 2x) với mọi x thuộc R. Tìm tất cả các số thực m để hàm số f(x^2 – 8x + m) có đúng 3 điểm cực trị sao cho x1^2 + x2^2 + x3^2 = 50 trong đó x1, x2, x3 là hoành độ của ba điểm cực trị đó.
Đề thi chọn HSG Toán 12 THPT năm 2018 - 2019 sở GDĐT Đồng Nai
giới thiệu đến bạn đọc nội dung đề thi chọn HSG Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Đồng Nai, kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2019, đề thi được dành cho học sinh khối 12 theo học chương trình chuẩn hệ THPT, đề gồm 06 bài toán tự luận, thời gian làm bài 180 phút, bên dưới là lời giải tham khảo của đề thi này. Trích dẫn đề thi chọn HSG Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Đồng Nai : + Cho hàm số y = 2x^3 – 3(m + 3)x^2 + 18mx + 8, với m là tham số. a) Tìm m để hàm số đã cho đồng biến trên R. b) Tìm m để đồ thị hàm số đã cho có hai điểm cực trị nằm vế hai phía của trục tung. c) Tìm m để giá trị nhô nhất của hàm số đã cho trên đoạn [-1;0] bằng 24. + Chứng minh rằng 3nCn chia hết cho 3 với mọi n nguyên dương. [ads] + Trong một tiết học môn Toán, giáo viên mời ba học sinh A, B, C thực hiện trò chơi chơi như sau: Mỗi bạn A, B, C chọn ngẫu nhiên một số nguyên khác 0 thuộc khoảng (-6;6) và lần lượt thế vào ba tham số của hàm số y = ax^4 + bx^2 + c; nếu đồ thị hàm số thu được có ba điểm cực trị đều nằm phía trên trục hoành thì được nhận thưởng. Tính xác suất để ba học sinh A, B, C được nhận thưởng.
Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 - 2019 sở GDĐT Lâm Đồng
Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Lâm Đồng dành cho hệ THPT, kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2019, đề thi có 01 trang với 08 câu tự luận, thời gian làm bài 180 phút, kỳ thi nhằm tuyển chọn các em học sinh khối 12 học theo hệ chương trình THPT giỏi Toán để biểu dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán tỉnh Lâm Đồng, tiếp tục bồi dưỡng, tham dự kỳ thi cấp Quốc gia.
Đề thi chọn học sinh giỏi Quốc gia THPT 2019 môn Toán (ngày thi thứ nhất)
giới thiệu đến thầy, cô và các em nội dung đề thi chọn học sinh giỏi Quốc gia THPT 2019 môn Toán ngày thi thứ nhất (VMO ngày 1), kỳ thi được tổ chức vào Chủ Nhật, ngày 13 tháng 01 năm 2019, đề thi gồm 01 trang với 04 bài toán tự luận, thí sinh có 180 phút để làm bài thi. Trích dẫn đề thi chọn học sinh giỏi Quốc gia THPT 2019 môn Toán (ngày thi thứ nhất) : + Cho tam giác ABC có trực tâm H và tâm đường tròn nội tiếp 1. Trên các tia AB, AC, BC, BA ,CA ,CB lần lượt lấy các điểm A1, A2, B1, B2, C1, C2 sao cho AA1 = AA2 = BC, BB1 = BB2 = CA, CC1 = CC2 = AB. Các cặp đường thẳng (B1B2, C1C2), (C1C2, A1A2), (A1A2, B1B2) lần lượt có các giao điểm là A’, B’, C’. a) Chứng minh rằng diện tích tam giác A’B’C’ không vượt quá diện tích tam giác ABC. b) Gọi J là tâm đường tròn ngoại tiếp tam giác A’B’C’. Các đường thẳng AJ, BJ, CJ lần lượt cắt các đường thẳng BC, CA, AB tại R, S, T tương ứng. Các đường tròn ngoại tiếp các tam giác AST, BTR, CRS cùng đi qua một điểm K. Chứng minh rằng nếu tam giác ABC không cần thì IHJK là hình bình hành. [ads] + Cho hàm số liên tục f: R → (0;+∞) thỏa mãn lim f(x) = lim f(x) = 0. Chứng minh rằng f(x) đạt giá trị lớn nhất trên R. Chứng minh rằng tôn tại hai dãy (xn), (yn) với xn < yn (n = 1, 2 …) sao cho chúng hội tụ tới một giới hạn và thỏa mãn f(x) = f(y) với mọi n.