Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tính tổng dãy số có quy luật

Nội dung Chuyên đề tính tổng dãy số có quy luật Bản PDF - Nội dung bài viết Sản phẩm: Chuyên đề tính tổng dãy số có quy luậtA. TRỌNG TÂM CẦN ĐẠTB. BÀI TOÁN THƯỜNG GẶP TRONG TÀI LIỆU Sản phẩm: Chuyên đề tính tổng dãy số có quy luật Tài liệu này bao gồm 103 trang, trong đó trình bày những kiến thức trọng tâm cần đạt và hướng dẫn giải các dạng toán liên quan đến tính tổng dãy số có quy luật. Đặc biệt, tài liệu này tuyển chọn các bài tập chuyên đề, các bài tập này có đáp án và lời giải chi tiết. Đây là tài liệu hỗ trợ cho học sinh lớp 6 trong việc ôn tập và thi học sinh giỏi môn Toán. A. TRỌNG TÂM CẦN ĐẠT Dạng 1: Tính tổng các số hạng cách đều S = a1 + a2 + a3 + ... + an. Dạng 2: Tính tổng có dạng S = 1 + a + a2 + a3 + ... + an. Dạng 3: Tính tổng có dạng S = 1 + a2 + a4 + a6 + ... + a2n. Dạng 4: Tính tổng có dạng S = a + a3 + a5 + a7 + ... + a2n + 1. Dạng 5: Tính tổng có dạng S = 1.2 + 2.3 + 3.4 + 4.5 + ... + n(n + 1). Dạng 6: Tính tổng có dạng S = 12 + 22 + 32 + 42 + ... + n2. Dạng 7: Tính tổng có dạng S = 12 + 32 + 52 + ... + (2k + 1)2. Dạng 8: Tính tổng có dạng S = 22 + 42 + 62 + ... + (2k)2. Dạng 9: Tính tổng có dạng S = a1.a2 + a2.a3 + a3.a4 + ... + an.an+1. Dạng 10: Tính tổng có dạng S = a1.a2.a3 + a2.a3.a4 + a3.a4.a5 + ... + an.an+1.an+2. Dạng 11: Tính tổng có dạng S = 1 + 23 + 33 + ... + n3. Dạng 12: Liên phân số. B. BÀI TOÁN THƯỜNG GẶP TRONG TÀI LIỆU Tài liệu này cũng cung cấp một số bài toán thường gặp trong việc tính tổng dãy số có quy luật. Những bài toán này giúp học sinh nắm vững kiến thức và áp dụng vào thực tế. Tài liệu này đã được biên soạn một cách chi tiết và cụ thể, nhằm giúp người đọc dễ hiểu và áp dụng kiến thức vào thực hành. Bên cạnh đó, phong phú về sắc thái và biểu cảm giúp người đọc có sự gắn kết và tương tác tốt với nội dung. Dựa vào nội dung trên, tài liệu này tập trung vào việc giúp học sinh lớp 6 ôn tập và nắm vững kiến thức về tính tổng dãy số có quy luật. Đồng thời, tài liệu cũng mang tính ứng dụng cao trong việc giải các bài toán thực tế. Tài liệu này đáp ứng đầy đủ yêu cầu và nhu cầu của học sinh lớp 6, đặc biệt là trong quá trình ôn tập và thi học sinh giỏi môn Toán.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề phân số bằng nhau
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phân số bằng nhau, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được khái niệm hai phân số bằng nhau. Kĩ năng: + Nhận dạng được hai phân số bằng nhau, không bằng nhau. + Lập được các cặp phân số bằng nhau từ một đẳng thức tích. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Nhận biết các cặp phân số bằng nhau. Dạng 2 . Tìm số chưa biết trong đẳng thức của hai phân số. Dạng 3 . Viết các phân số bằng nhau từ đẳng thức đã cho.
Chuyên đề mở rộng khái niệm phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề mở rộng khái niệm phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Thấy được sự khác nhau và giống nhau giữa khái niệm phân số đã học ở tiểu học và khái niệm phân số ở lớp 6. Kĩ năng: + Viết được các phân số mà tử số và mẫu số là các số nguyên. + Biết cách dùng phân số để diễn đạt một nội dung thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Viết các phân số. “a phần b” hoặc a : b được viết thành a/b (trong đó b khác 0). Biểu diễn phân số của một hình cho trước: + Mẫu cho biết số phần bằng nhau được chia ra. + Tử cho biết số phần được lấy (tô màu). Dạng 2 : Viết các số nguyên kẹp giữa hai phân số có tử là bội của mẫu. + Bước 1. Tính giá trị của các phân số đã cho dưới dạng số nguyên. + Bước 2. Tìm tất cả các số nguyên “kẹp giữa” hai số nguyên đó. Dạng 3 : Điều kiện để phân số tồn tại. Điều kiện để một biểu thức có giá trị là một số nguyên. Phân số a/b tồn tại khi a b và b khác 0. Phân số a b có giá trị là một số nguyên khi a b.
Chuyên đề bội và ước của một số nguyên
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề bội và ước của một số nguyên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Nhận biết được quan hệ chia hết, khái niệm ước và bội trong tập hợp các số nguyên. Kĩ năng: + Xác định được bội và ước của các số nguyên cho trước. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Tìm bội (ước) của một số nguyên. Bội của một số nguyên a có dạng a m m. Ước của một số nguyên: + Nếu số nguyên có giá trị tuyệt đối nhỏ thì nhẩm xem nó chia hết cho những số nào rồi từ đó tìm các ước cả ước dương và ước âm. + Nếu số nguyên có giá trị tuyệt đối lớn thì phân tích số đó ra thừa số nguyên tố để tìm ước. Dạng 2 . Tìm x thỏa mãn đẳng thức. Dạng 3 . Tìm x thỏa mãn điều kiện chia hết.
Chuyên đề nhân hai số nguyên, tính chất của phép nhân
Tài liệu gồm 17 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề nhân hai số nguyên, tính chất của phép nhân, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Hiểu được quy tắc nhân hai số nguyên. Kĩ năng: + Thực hiện được phép nhân hai số nguyên. + Vận dụng được các tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng trong tính toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Thực hiện phép tính. Quy tắc nhân hai số nguyên khác dấu: Số âm × Số dương = Số âm. + Muốn nhân hai số nguyên khác dấu, ta nhân hai giá trị tuyệt đối của chúng rồi đặt dấu “-” trước kết quả. + Với mọi số nguyên a: a.0 = 0.a = 0. Quy tắc nhân hai số nguyên cùng dấu: + Nhân hai số nguyên dương: Thực hiện như phép nhân thông thường. + Nhân hai số nguyên âm: Muốn nhân hai số nguyên âm, ta nhân hai giá trị tuyệt đối của chúng. Dạng 2 . Vận dụng tính chất của phép nhân. + Tính chất giao hoán. + Tính chất kết hợp. + Nhân với số 1. + Tính chất phân phối của phép nhân đối với phép cộng, phép trừ.