Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi dành cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức (y + 2)x2 + 1 = y2. Tìm tất cả các số nguyên dương n sao cho 3n + 1, 11n + 1 là các số chính phương và n + 3 là số nguyên tố. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Đường thẳng AO cắt đường thẳng BC tại điểm E. Gọi M là trung điểm của đoạn thẳng BC. Đường thẳng AM cắt đường tròn (O) tại điểm N (N khác A). Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm D. a) Chứng minh AOND là tứ giác nội tiếp và tia DO là phân giác của góc ADN. b) Đường thẳng AD cắt đường tròn (O) tại điểm P (P khác A). Đường tròn ngoại tiếp tam giác AME cắt đường tròn (O) tại điểm F (F khác A). Chứng minh AB.PC = AC.PB và ba điểm E, F, P thẳng hàng. c) Kẻ đường kính AK của đường tròn (O). Chứng minh ba điểm D, K, F thẳng hàng và đường thẳng FN đi qua trung điểm của đoạn thẳng DM. + Sau khi tổ chức một trận đấu giao hữu giữa hai đội bóng lớp 9A và 9B, Ban tổ chức có 11 gói kẹo muốn chia cho 2 đội. Mỗi đội được chia 5 gói làm phần thưởng và 1 gói Ban tổ chức giữ lại để liên hoan. Biết rằng dù chọn bất kì gói nào để giữ lại, Ban tổ chức luôn có thể chia 10 gói còn lại cho 2 đội mà tổng số viên kẹo trong 5 gói cho mỗi đội là bằng nhau. Chứng minh rằng 11 gói kẹo đó phải có số viên kẹo bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lớp 10 THPT năm 2019 trường THCS Thái Thịnh - Hà Nội
Nhằm giúp các em học sinh lớp 9 ôn tập, rèn luyện môn Toán để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020, vừa qua, trường THCS Thái Thịnh (Thái Thịnh, Thịnh Quang, Đống Đa, Hà Nội) đã tổ chức kỳ thi thử vào lớp 10 THPT môn Toán. Đề thi thử Toán vào lớp 10 THPT năm 2019 trường THCS Thái Thịnh – Hà Nội được biên soạn dựa theo cấu trúc đề minh họa môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 do sở Giáo dục và Đào tạo Hà Nội đề xuất, đề gồm 1 trang với 5 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử Toán vào lớp 10 THPT năm 2019 trường THCS Thái Thịnh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một trung tâm dạy nghề tổ chức cho 180 học sinh đi tham quan. Người ta dự tính: Nếu dùng loại xe lớn chuyên chở một lượt hết số học sinh thì phải điều ít hơn nếu dùng loại xe nhỏ chuyên chở một lượt hết số học sinh là 2 chiếc. Biết rằng mỗi xe lớn có nhiều hơn mỗi xe nhỏ là 15 chỗ ngồi. Tính số xe lớn, nếu loại xe đó được huy động. [ads] + Trong Oxy, cho parabol (P): y = -x^2 và đường thẳng d: y = mx + m (với m là tham số). a) Tìm điều kiện của m để (d) có điểm chung với (P). b) Khi (d) cắt (P) tại hai điểm phân biệt là A và B, gọi x1, x2 là hoành độ của A và B. Tìm m sao cho x1 = 2×2. + Cho nửa đường tròn (O;R), đường kính AB. Gọi C là điểm chính giữa cung AB. Điểm M thuộc cung AC. Hạ MH vuông góc AB tại H, AC cắt MH tại K; MB cắt AC tại E. Hạ El vuông góc AB tại I. a) Chứng minh tứ giác BHKC và AMEI nội tiếp. b) Chứng minh AK.AC = AM^2. c) Cho R = 5cm, tính giá trị của tổng S = AE.AC + BE.BM. d) Chứng minh rằng khi M di động trên cung AC thì tâm đường tròn ngoại tiếp tam giác IMC thuộc một đường thẳng cố định.
Đề thi thử Toán vào lớp 10 năm 2019 - 2020 phòng GDĐT Chí Linh - Hải Dương
Tháng 5 năm 2019, phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương tổ chức kỳ thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 dành cho học sinh lớp 9, kỳ thi nhằm tạo điều kiện để các em được thử sức mình, rút ra được những kinh nghiệm cần thiết và xác định được cách thức ôn tập hợp lý trong quãng thời gian còn lại. Đề thi thử Toán vào lớp 10 năm 2019 – 2020 phòng GD&ĐT Chí Linh – Hải Dương được biên soạn bám sát cấu trúc đề thi môn Toán tuyển sinh vào lớp 10 THPT sở GD&ĐT tỉnh Hải Dương những năm gần đây, đề gồm 1 trang với 5 bài toán tự luận, học sinh có 90 phút để làm bài thi. [ads] Trích dẫn đề thi thử Toán vào lớp 10 năm 2019 – 2020 phòng GD&ĐT Chí Linh – Hải Dương : + Một phòng họp dự định có 120 người dự họp, nhưng khi họp có 160 người tham dự nên phải kê thêm 2 dãy ghế và mỗi dãy phải kê thêm một ghế nữa thì vừa đủ. Tính số dãy ghế dự định lúc đầu. Biết rằng số dãy ghế lúc đầu trong phòng nhiều hơn 20 dãy ghế và số ghế trên mỗi dãy ghế là bằng nhau. + Cho phương trình: x^2 + 3x + m – 1 = 0 (x là ẩn số). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: x1(x1^4 – 1) + x2(32×2^4 – 1) = 3. + Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O, gọi AD là đường kính của đường tròn (O). Tiếp tuyến tại D của đường tròn (O) cắt đường thẳng BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E và F. 1) Chứng minh: MD^2 = MC.MB. 2) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO, đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P. 3) Chứng minh O là trung điểm của EF.
Đề thi thử Toán vào lớp 10 năm 2019 - 2020 trường Lương Ngọc Quyến - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 9 đề thi thử Toán tuyển sinh vào lớp 10 năm học 2019 – 2020 trường THPT Lương Ngọc Quyến – Thái Nguyên, kỳ thi nhằm giúp các em học sinh nắm được dạng đề cũng như độ khó tương đối, để các em biết được các dạng toán cần ôn tập, cũng như có kế hoạch ôn tập phù hợp cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 sắp tới. Trích dẫn đề thi thử Toán vào lớp 10 năm 2019 – 2020 trường Lương Ngọc Quyến – Thái Nguyên : + Cách tính giá cước của hãng Taxi X cho bởi bảng sau đây: BẢNG GIÁ CƯỚC TAXI (đã bao gồm 10% VAT). Giá mở cửa: 10 000 đ/0,6km. Tiếp theo đến km thứ 25: 13 000 đ/km. Từ km thứ 26 trở đi: 11 000 đ/km. Bác An đi xe của hãng taxi này hết 382 200 đ. Hỏi xe taxi chở Bác An đã đi quãng đường dài bao nhiêu km (biết rằng không có thời gian chờ)? [ads] + Cho đường tròn (O) có bán kính là x (cm) và chu vi là y (cm). Lập công thức biểu thị y theo x và cho biết y có phải là hàm số bậc nhất của x không? Vì sao? + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O và AB < AC. Vẽ đường kính AD của đường tròn (O). Kẻ BE và CF vuông góc với AD (E, F thuộc AD). Kẻ AH vuông góc với BC (H thuộc BC). a) Chứng minh bốn điểm A, B, H, E cùng nằm trên một đường tròn. b) Gọi M là trung điểm của BC. Chứng minh ME = MF.
Đề thi thử Toán tuyển sinh lớp 10 năm 2018 - 2019 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến các em học sinh lớp 9 đề thi thử Toán tuyển sinh lớp 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội, đề thi được biên soạn theo hình thức và cấu trúc tương tự với đề Toán tuyển sinh vào lớp 10 của sở Giáo dục và Đào tạo Hà Nội những năm gần đây. Trích dẫn đề thi thử Toán tuyển sinh lớp 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội : + Một ca nô đi xuôi dòng từ A đến B cách nhau 54 km, cùng lúc đó một khúc gỗ trôi tự do theo dòng nước từ A. Khi ca nô đến B, nó dừng lại ở đó 2 giờ và quay trở lại về A. Trên đường về, ca nô gặp khúc gỗ tại vị trí cách A 19 km. Tính vận tốc thực của ca nô biết vận tốc của dòng nước là 4km/h. [ads] + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2mx + 2m + 3. a) Tìm m để (d) và (P) cắt nhau tại điểm phân biệt A và B nằm khắc phía của Oy. b) Với các giá trị của m ở câu a, lần lượt kẻ AH, BK vuông góc với Ox tại H và K. Gọi P là giao điểm của (d) và Oy. Tìm m để tam giác PHK vuông tại P. + Cho đường tròn (O;R) đường kính AB. Dây CD vuông góc với AB tại I cố định nằm giữa A và O. Lấy M bất kì trên cung nhỏ BC (M không trùng với B, C). AM cắt CI tại điểm K. a) Chứng minh tứ giác BMKI nội tiếp. b) Chứng minh AK.AM = AI.AB = AC^2. c) Nếu tam giác BIC quay quanh quạnh BI một vòng ta sẽ được một hình nón đỉnh B. Hãy tính thể tích hình nón này khi ABC = 30°. d) Tìm vị trí của M trên cung nhỏ BC để chu vi tứ giác ABMC lớn nhất.