Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số phương pháp giải phương trình nghiệm nguyên - Tạ Văn Đức

Trong chương trình môn Toán cấp Trung học Cơ sở, bài toán phương trình nghiệm nguyên là một chủ đề hay nhưng khó đối với học sinh, dạng toán này được bắt gặp khá thường xuyên trong các đề thi học sinh giỏi Toán lớp 8 – lớp 9. Để phục vụ công tác bồi dưỡng học sinh giỏi Toán lớp 8 và Toán lớp 9, thầy Tạ Văn Đức biên soạn tài liệu giới thiệu một số phương pháp giải phương trình nghiệm nguyên. Khái quát nội dung tài liệu một số phương pháp giải phương trình nghiệm nguyên – Tạ Văn Đức: Phương pháp 1 . Áp dụng tính chia hết. 1. Phương trình dạng ax + by = c. 2. Đưa về phương trình ước số. Phương pháp 2 . Phương pháp lựa chọn Modulo (hay còn gọi là xét số dư từng vế). 1. Xét số dư hai vế. 2. Sử dụng số dư để chỉ ra phương trình vô nghiệm. Phương pháp 3 . Sử dụng bất đẳng thức. 1. Đối với các phương trình mà các biến có vai trò như nhau thì người ta thường dùng phương pháp sắp thứ tự các biến. 2. Áp dụng bất đẳng thức cổ điển. 3. Áp dụng tính đơn điệu của từng vế. 4. Dùng điều kiện delta ≥ 0 (hoặc delta’ ≥ 0) để phương trình bậc hai có nghiệm. [ads] Phương pháp 4 . Phương pháp chặn hay còn gọi là phương pháp đánh giá. Chủ yếu dựa vào hai nhận xét sau: + Không tồn tại n thuộc Z thỏa mãn a^2 < n^2 < (a + 1)^2 với a là một số nguyên. + Nếu a^2 < n^2 < (a + 2)^2 (với a và n thuộc Z) thì n = a + 1. Phương pháp 5 . Sử dụng tính chất của số chính phương. Một số tính chất thường được sử dụng: + Số chính phương không tận cùng bằng 2, 3, 7, 8. + Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2. + Số chính phương khi chia cho 3, cho 4 chỉ có thể dư 0 hoặc 1. + Số chính phương chia cho 5, cho 8 thì số dư chỉ có thể là 0, 1 hoặc 4. + Số chính phương lẻ chia cho 4, 8 thì số dư đều là 1. + Lập phương của một số nguyên chia cho 9 chỉ có thể dự 0, 1 hoặc 8. Phương pháp 6 . Phương pháp lùi vô hạn (hay còn gọi là phương pháp xuống thang). Phương pháp này dùng để chứng minh một phương trình nào đó ngoài nghiệm tầm thường x = y = z = 0 thì không còn nghiệm nào khác. Phương pháp 7 . Nguyên tắc cực hạn (hay còn gọi là nguyên lí khởi đầu cực trị). Về mặt hình thức thì phương pháp này khác với phương pháp lùi vô hạn nhưng về ý tưởng sử dụng thì như nhau, đều chứng minh phương trình ngoài nghiệm tầm thường không có nghiệm nào khác. Phương pháp 8 . Sử dụng mệnh đề cơ bản của số học.

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập Toán THCS thi vào lớp 10
Cuốn sách Tổng ôn tập Toán THCS thi vào lớp 10 gồm 193 trang hệ thống các chủ đề Toán học chính từ lớp 6 đến lớp 9 nhằm giúp học sinh ôn tập chuẩn bị cho kỳ thi vào lớp 10 môn Toán, đồng thời giúp các em có nền tảng kiến thức vững vàng để tiếp tục học tốt môn Toán THPT, sách được biên soạn bởi các tác giả: Mai Công Mãn (chủ biên), Nguyễn Trọng Dương, Nguyễn Thế Vận, Nguyễn Thị Hiền, Thiều Thị Huyền. Nội dung sách Tổng ôn tập Toán THCS thi vào lớp 10 gồm các chủ đề : Phần 1 . Đại số 1. Biến đổi đồng nhất 2. Biến đổi căn thức 3. Hàm số và đồ thị 4. Phương trình 5. Hệ phương trình 6. Giải bài toán bằng cách lập phương trình và hệ phương trình 7. Bất đẳng thức – Bất phương trình – Cực trị đại số [ads] Phần 2 . Hình học 1. Định lý Talet – Tam giác đồng dạng 2. Đường tròn 3. Hình học không gian
16 chuyên đề ôn thi vào lớp 10 môn Toán
THCS. giới thiệu đến thầy, cô và các em học sinh cuốn sách 16 chuyên đề ôn thi vào lớp 10 môn Toán, sách gồm 192 trang tuyển tập 9 chuyên đề Đại số và 7 chuyên đề Hình học môn Toán khối THCS nhằm giúp các em ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán. Sách được biên soạn bởi các tác giả: Bùi Văn Tuyên (chủ biên) và Nguyễn Đức Trường. Phần 1. Các chuyên đề Đại số + Chuyên đề 1. Rút gọn và tính giá trị của biểu thức + Chuyên đề 2. Giải phương trình và hệ phương trình bậc nhất hai ẩn + Chuyên đề 3. Phương trình bậc hai một ẩn + Chuyên đề 4. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình + Chuyên đề 5. Hàm số và đồ thị + Chuyên đề 6. Chứng minh bất đẳng thức + Chuyên đề 7. Giải bất phương trình + Chuyên đề 8. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức + Chuyên đề 9. Giải toán có nội dung số học [ads] Phần 2. Các chuyên đề Hình học + Chuyên đề 10. Chứng minh các hệ thức hình học + Chuyên đề 11. Chứng minh tứ giác nội tiếp và nhiều điểm cùng nằm trên đường tròn + Chuyên đề 12. Chứng minh quan hệ tiếp xúc giữa đường thẳng và đường tròn hoặc hai đường tròn + Chuyên đề 13. Chứng minh điểm cố định + Chuyên đề 14. Các bài tập có nội dung tính toán + Chuyên đề 15. Quỹ tích và dựng hình Phần 3. Một số đề thi vào lớp 10 môn Toán tham khảo Phần 4. Đáp số và hướng dẫn giải
Tài liệu chuyên Toán THCS
Tài liệu chuyên Toán THCS gồm 70 trang tuyển chọn các chuyên đề bồi dưỡng Toán dành cho học sinh khối chuyên và học sinh giỏi các lớp 6 – 7 – 8 – 9, đây là các chuyên đề thường xuất hiện trong các đề thi HSG và đề thi tuyển sinh vào 10 môn Toán. Trong mỗi chuyên đề đều bao gồm lý thuyết, ví dụ minh họa có lời giải chi tiết và phần bài tập rèn luyện. Các chuyên đề có trong tài liệu : 1. Chuyên đề 1: Phương pháp chứng minh phản chứng 2. Chuyên đề 2: Nguyên tắc Dirichlet 3. Chuyên đề 3: Định lý Bézout – Lược đồ Horner 4. Chuyên đề 4: Dấu tam thức bậc hai [ads] 5. Chuyên đề 5: Một số phương pháp giải phương trình nghiệm nguyên 6. Chuyên đề 6: Phần nguyên và ứng dụng 7. Chuyên đề 7: Đường thẳng Simson 8. Chuyên đề 8: Bất đẳng thức Erdos – Modell và một vài ứng dụng 9. Chuyên đề 9: Định lý Ptôlêmê và đặc trưng của tứ giác nội tiếp
Chuyên đề toán thực tế dành cho học sinh THCS - Nghiêm Xuân Huy
Tài liệu gồm 100 trang tuyển chọn và giải chi tiết 184 bài toán thực tế dành cho học sinh THCS (các lớp 6, 7, 8, 9), tài liệu được biên soạn bởi tác giả Nghiêm Xuân Huy. Trích dẫn tài liệu : + Hai chiếc xe ô tô cùng khởi hành, một chiếc từ TP HCM đi Vũng Tàu, một chiếc từ Vũng Tàu về TP HCM. Một chiếc đến nơi trễ hơn chiếc kia 1 giờ. Một chiếc chạy nhanh gấp 1,5 lần chiếc kia. Hỏi chiếc chạy nhanh chạy đến nơi mất bao lâu? + Đòn bẩy là một trong các loại máy cơ đơn giản được sử dụng nhiều trong đời sống để biến đổi lực tác dụng lên vật theo hướng có lợi cho con người. Đòn bẩy là một vật rắn được sử dụng với một điểm tựa hay là điểm quay để làm biến đổi lực tác dụng của một vật lên một vật khác. Archimedes đã từng nói: “Hãy cho tôi một điểm tựa, tôi sẽ nâng bổng trái đất lên.” Đòn bẩy và nguyên tắc đòn bẩy được sử dụng nhiều trong các máy móc, thiết bị cũng như các vật dụng thông thường trong đời sống hằng ngày. [ads] Quy tắc của đòn bẩy: F1.r1 = F2.r2. r là khoảng cách đến điểm tựa Δ. F là trọng lượng vật thể. Lưu ý phương của lực vuông góc với phương của cánh tay đòn. Giải quyết bài toán sau: Tìm X? + Giám đốc dự án xây dựng một chung cư đang phân vân giữ việc mua hẳn 4 xe tải để chở vật liệu xây dựng hoặc chỉ thuê mướn 4 xe. Nếu mua thì giá 1 xe là 250(triệu đồng), mỗi ngày tốn chi phí nhân viên chuyên chở và xăng dầu là 2(triệu đồng). Còn nếu thuê thì giá thuê 1 xe chở là 1(triệu đồng)/ ngày. Hỏi sau bao nhiêu ngày thì phương án mua xe đã bằng phương án thuê xe? Chủ đề toán thực tế là một chủ đề mới mẻ và đang được đẩy mạnh đưa vào chương trình toán cấp 3 và toán cấp 2 nhằm giúp các kiến thức toán học trở nên gần gũi hơn trong cuộc sống, và giúp học sinh biết cách vận dụng các kiến thức toán đã học sinh giải quyết các tình huống có trong thực tế.