Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia môn Toán năm 2019 sở GDĐT Tiền Giang

Chiều thứ Tư ngày 15 tháng 5 năm 2019, sở Giáo dục và Đào tạo tỉnh Tiền Giang tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019, kỳ thi nhằm giúp đánh giá chất lượng môn Toán của học sinh khối 12 trong quá trình các em ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019. Đề thi thử THPT Quốc gia môn Toán năm 2019 sở GD&ĐT Tiền Giang có mã đề 101, đề có hình thức và cấu trúc tương tự đề minh họa THPT Quốc gia môn Toán năm 2019 do Bộ Giáo dục và Đào tạo đề xuất. [ads] Trích dẫn đề thi thử THPT Quốc gia môn Toán năm 2019 sở GD&ĐT Tiền Giang : + Một mảnh đất hình tròn tâm O bán kính 6m. Người ta cần trồng cây trên dải đất rộng 6m nhận O là tâm đối xứng (tham khảo hình vẽ bên). Biết kinh phí trồng cây là 70 nghìn đồng/m2. Số tiền cần để trồng cây trên dải đất đó gần nhất với số tiền nào dưới đây? + Từ tấm bìa hình vuông cạnh 5 cm, cắt 4 góc 4 hình vuông có cạnh bằng x để phần còn lại có thể gấp thành hình hộp chữ nhật không nắp. Thể tích lớn nhất của hình hộp đó bằng? + Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị của hàm số y = x^3 – 3mx^2 + 3(m^2 – 1)x có hai điểm cực trị là A và B sao cho khoảng cách từ A và B đến đường thẳng Δ: 3x – y – 5 = 0 bằng nhau. Tích giá trị tất cả các phần tử của S bằng?

Nguồn: toanmath.com

Đọc Sách

Tách phân dạng toán đề thi TN THPT môn Toán (2017 2023) phần Giải tích
Nội dung Tách phân dạng toán đề thi TN THPT môn Toán (2017 2023) phần Giải tích Bản PDF - Nội dung bài viết Sản phẩm Tách phân dạng toán đề thi TN THPT môn Toán (2017-2023) phần Giải tíchCHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀMBÀI 1 - SỰ BIẾN THIÊN CỦA HÀM SỐBÀI 2 - CỰC TRỊ CỦA HÀM SỐCHUYÊN ĐỀ SỐ PHỨCBÀI 1 - ĐỊNH NGHĨA SỐ PHỨCBÀI 2 - CÁC PHÉP TOÁN SỐ PHỨCBÀI 3 - PHƯƠNG TRÌNH BẬC HAI Sản phẩm Tách phân dạng toán đề thi TN THPT môn Toán (2017-2023) phần Giải tích Được biên soạn bởi thầy giáo Dương Minh Hùng, tài liệu này bao gồm 559 trang tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Giải tích. Tài liệu cung cấp đáp án và lời giải chi tiết để giúp học sinh hiểu rõ bài tập. Bên dưới là một số chuyên đề quan trọng trong phần Giải tích: CHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀM BÀI 1 - SỰ BIẾN THIÊN CỦA HÀM SỐ Trong chuyên đề này, học sinh sẽ học về sự biến thiên của hàm số. Bao gồm cách tính đơn điệu của các hàm số chỉ dựa trên công thức, đồ thị hoặc biểu thức đạo hàm. BÀI 2 - CỰC TRỊ CỦA HÀM SỐ Chuyên đề này tập trung vào việc tìm cực trị của hàm số. Học sinh sẽ thực hành tìm điểm cực trị dựa trên đồ thị, biểu thức đạo hàm, hoặc các điều kiện đặc biệt. ... CHUYÊN ĐỀ SỐ PHỨC BÀI 1 - ĐỊNH NGHĨA SỐ PHỨC Chuyên đề này giới thiệu về số phức và các tính chất cơ bản của nó. Bao gồm cách thực hiện phép toán cơ bản với số phức và ứng dụng của nó trong các bài toán. BÀI 2 - CÁC PHÉP TOÁN SỐ PHỨC Trong phần này, học sinh sẽ học cách thực hiện các phép toán phức tạp với số phức, bao gồm việc xác định các yếu tố của số phức và giải các bài toán liên quan. BÀI 3 - PHƯƠNG TRÌNH BẬC HAI Chuyên đề này tập trung vào việc giải phương trình bậc hai, sử dụng các phương pháp như định lí Viet và ứng dụng trong các bài toán khác nhau liên quan đến đề tài này. Đây là một số chuyên đề quan trọng trong phần Giải tích của sách. Việc học và ôn tập những nội dung này sẽ giúp học sinh nắm vững kiến thức và kỹ năng cần thiết để vượt qua kỳ thi THPT môn Toán.
Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2023 môn Toán
Nội dung Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2023 môn Toán Bản PDF - Nội dung bài viết Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2023 môn Toán Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2023 môn Toán Tài liệu này bao gồm 165 trang, được biên soạn bởi tác giả Trần Minh Quang, dành cho việc hướng dẫn giải các bài toán mức độ vận dụng cao (VDC) trong các đề thi thử tốt nghiệp THPT năm 2023 môn Toán. Nội dung tài liệu sẽ giúp cho các em học sinh lớp 12 có thể vượt qua mức điểm 9 - 10 trong kỳ thi tốt nghiệp THPT môn Toán năm học 2022 - 2023. Một số đề bài mẫu trong tài liệu bao gồm: Trong không gian Oxyz, cho tam giác ABC có A(3, 4, 4), B(1, 2, 3), C(5, 0, 1). Điểm M thay đổi trong không gian sao cho tam giác ABM và AMC vuông cân tại M. Mặt phẳng đi qua B và vuông góc với AC cắt AM tại N. Hỏi khoảng cách từ N đến mặt phẳng ABC có giá trị lớn nhất bằng bao nhiêu? Trên tập hợp các số phức, xét phương trình \(4z^2 + mz - m^2 - 3 = 0\) (với m là tham số thực). Có bao nhiêu giá trị thực của tham số m sao cho phương trình đã cho có bốn nghiệm và 4 điểm A, B, C, D biểu diễn 4 nghiệm đó trên mặt phẳng phức tạo thành một tứ giác có diện tích bằng 4? Một khối nón N có bán kính đáy bằng R và chiều cao bằng 18, được làm bằng chất liệu không thấm nước và có khối lượng riêng lớn hơn khối lượng riêng của nước. Khối N được đặt trong một cái cốc hình trụ đường kính bằng 6R sao cho đáy của N tiếp xúc với đáy của cốc. Đổ nước vào cốc đến khi mực nước đạt độ cao bằng 18 thì lấy khối N ra. Độ cao của nước trong cốc sau khi đã lấy khối N ra bằng bao nhiêu? Dựa vào những bài toán thú vị như trên, tài liệu Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2023 môn Toán sẽ giúp các em học sinh luyện tập và củng cố kiến thức một cách hiệu quả, từ đó nâng cao khả năng giải toán và đạt điểm cao trong kỳ thi tốt nghiệp THPT.
50 chuyên đề phát triển đề tham khảo tốt nghiệp THPT 2023 môn Toán
Nội dung 50 chuyên đề phát triển đề tham khảo tốt nghiệp THPT 2023 môn Toán Bản PDF - Nội dung bài viết 50 Chuyên Đề Phát Triển Đề Tham Khảo Tốt Nghiệp THPT 2023 Môn Toán 50 Chuyên Đề Phát Triển Đề Tham Khảo Tốt Nghiệp THPT 2023 Môn Toán Tài liệu này bao gồm 50 chuyên đề phát triển đề tham khảo tốt nghiệp THPT 2023 môn Toán, được biên soạn bởi thầy giáo Vũ Ngọc Huy từ trường THPT chuyên Lê Quý Đôn, tỉnh Ninh Thuận. Sách có tổng cộng 481 trang, với đầy đủ đáp án và lời giải chi tiết cho từng bài tập. Mỗi chuyên đề được chia thành các phần nhỏ: Kiến Thức Cần Nhớ: Đây là phần giúp bạn nhớ những kiến thức cơ bản liên quan đến chuyên đề đó. Bài Tập Mẫu: Mỗi chuyên đề đều có các bài tập mẫu được giải chi tiết để bạn hiểu rõ cách giải. Bài Tập Tương Tự và Phát Triển: Sau các bài tập mẫu, bạn sẽ có thêm bài tập tương tự và phát triển để rèn luyện kỹ năng. Bảng Đáp Án: Cuối sách sẽ có bảng đáp án giúp bạn tự kiểm tra và đối chiếu kết quả của mình. Các chuyên đề bao gồm nhiều phần học thuật như số phức, hàm số logarit, đạo hàm, phương trình, cấp số cộng, cấp số nhân, hình học không gian, và nhiều chủ đề khác. Bằng việc ôn tập và giải các bài tập trong tài liệu này, bạn sẽ rèn luyện được kỹ năng giải toán, củng cố kiến thức và chuẩn bị tốt cho kỳ thi tốt nghiệp THPT 2023. Đừng ngần ngại tham gia học tập và vượt qua thách thức này!
Phát triển 16 dạng toán trọng tâm đề tham khảo TN THPT 2023 môn Toán
Nội dung Phát triển 16 dạng toán trọng tâm đề tham khảo TN THPT 2023 môn Toán Bản PDF - Nội dung bài viết Phân tích chi tiết Tài liệu Phát triển 16 dạng toán trọng tâm đề tham khảo TN THPT 2023 môn Toán Phân tích chi tiết Tài liệu Phát triển 16 dạng toán trọng tâm đề tham khảo TN THPT 2023 môn Toán Tài liệu này được biên soạn bởi thầy giáo Phan Nhật Linh và bao gồm 545 trang. Trong tài liệu, được phát triển 16 dạng toán trọng tâm từ câu 35 đến câu 50 trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán của Bộ Giáo dục và Đào tạo. Cụ thể, các dạng toán bao gồm: Dạng 1: Tập Hợp Điểm Biểu Diễn Số Phức. Dạng 2: Viết Phương Trình Đường Thẳng Đi Qua Hai Điểm. Dạng 3: Tìm Tọa Độ Điểm Liên Quan Đến Mặt Phẳng. Dạng 4: Khoảng Cách Trong Không Gian. Dạng 5: Bất Phương Trình Logarit. Dạng 6: Tính Tích Phân. Dạng 7: Cực Trị Của Hàm Số. Dạng 8: Cực Trị Số Phức. Dạng 9: Thể Tích Khối Đa Diện Khi Biết Yếu Tố Khoảng Cách. Dạng 10: Ứng Dụng Tích Phân Tính Diện Tích Hình Phẳng. Dạng 11: Phương Trình Bậc Hai Số Phức. Dạng 12: Khoảng Cách Trong Hệ Tọa Độ Oxyz. Dạng 13: Tìm Cặp Số Nguyên Liên Quan Đến Bất Phương Trình Logarit. Dạng 14: Tính Khoảng Cách Liên Quan Đến Mặt Nón. Dạng 15: Cực Trị Trong Không Gian Oxyz. Dạng 16: Tính Đơn Điệu Hàm Số Chứa Giá Trị Tuyệt Đối. Mỗi dạng toán đều có các phần: Kiến Thức Cần Nhớ, Bài Tập Trong Đề Minh Họa, Bài Tập Tương Tự Và Phát Triển. Tài liệu cũng bao gồm đáp án và lời giải chi tiết, giúp học sinh hiểu rõ hơn về cách giải các dạng toán này.